K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\cdot503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}\)

\(\Leftrightarrow503x=\frac{1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2014}{2}-1+\frac{2015}{3}-1+...+\frac{4024}{2012}-1+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=\frac{2012}{503}\)

18 tháng 2 2017

từng bước bao gồm cả lập luân luôn

a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)

\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)

nếu ta trừ một vào từng số hạng được tử số giống nhau

\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)

\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế

\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)

Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)

\(x=\frac{2012}{503}\)

18 tháng 2 2017

mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy

20 tháng 1 2019

\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)

\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)

\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)

\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)

29 tháng 6 2015

1/

\(1+\frac{2014}{2}+...+\frac{4024}{2012}=1+\left(1+\frac{2012}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{2012}{2012}\right)\)

\(=2012+2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

Phương trình đã cho  tương đương:

 \(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+...+\frac{1}{2012}\right)\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=4\)

2/ 

\(\frac{8}{1.9}+\frac{8}{9.17}+...+\frac{8}{49.57}+\frac{58}{57}+2x-2=2x+\frac{7}{3}+5x-\frac{8}{4}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+...+\frac{1}{49}-\frac{1}{57}+\left(1+\frac{1}{57}\right)-2-\frac{7}{3}+\frac{8}{4}=5x\)

\(\Leftrightarrow\)\(5x=\frac{17}{3}\Leftrightarrow x=\frac{17}{15}\)

3/

Ta có: \(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{n\left(n+2\right)}\right)\)\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.......\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

\(=2.\frac{n+1}{n+2}

Bạn hỏi hay trả lời luôn dzậy?

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

26 tháng 1 2016

Đừng tin bn Thạch bạn ấy nói dối đấy

Chuẩn 100% luôn tik nha

26 tháng 1 2016

Ta có: Tử là:

B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\)            (2013 số hạng 1)

   =\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)

  =\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)

 =\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

7 tháng 1 2018

Phương trình đã cho tương đương với :

\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)

\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

Tìm x theo như toán lớp 6 nha

\(x-2013=0\)

\(\Leftrightarrow\)\(x=2013\)

7 tháng 1 2018

ta có pt 

<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)

<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)

^_^

5 tháng 2 2018

Ta có phương trình : 

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+....+\frac{x-2012}{1}=2012\)

Ta thấy phương trình đã cho tương ứng với phương trình : 

\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)+2012=2012\)

\(\Rightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Rightarrow\left(x-2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+....+1\right)=0\)

Mặt khác \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\ne0\)

Do đó \(\Rightarrow x-2013=0\Rightarrow x=2013\)

Do vậy \(x=2013\)thoả mãn phương trình ban đầu 

5 tháng 2 2018

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2000}+.....+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}+\frac{x-2}{2011}+........+\frac{x-2012}{1}-2012=0\)

\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+......+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+......+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+.....+1\right)=0\)

Mà \(\frac{1}{2012}+\frac{1}{2011}+....+1\ne0\)

Vậy ...

\(\Leftrightarrow x=2013\)

\(\Leftrightarrow x-2013=0\)