K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

1 tháng 11 2016

Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{x-3}=b\end{cases}}\)

=> a2 + b2 = 2

PT \(\Leftrightarrow\frac{a^3+b^3}{a+b}=2\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=2\)

\(\Leftrightarrow2-ab=2\Leftrightarrow ab=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{5-x}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

13 tháng 11 2018

Nghĩ đc bài nào làm bài đấy ^^

\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)

\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)

\(\Leftrightarrow x-2mx=m^2+3\)

\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)

*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)

Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)

Pt vô nghiệm

*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)

Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)

Kết hợp ĐKXĐ \(x^2+x-3\ge0\)

                    \(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)

Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2

=> KL

13 tháng 11 2018

2) ĐKXĐ : -1 < x < 8

 Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)

\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)

Khi đó \(a+\frac{a^2-9}{2}=m\)

 \(\Leftrightarrow2a+a^2-9=2m\)

\(\Leftrightarrow a^2+2a-9-2m=0\)(1)

Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)

Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)

           \(\Leftrightarrow a^2+2a-9\ge-10\)

            \(\Leftrightarrow a^2+2a+1\ge0\)

            \(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)

Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 8

       * với m < -5 thì pt vô nghiệm

P/S: chả bt cách này đúng ko nx =.='