K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 7 2021

ĐK: \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi,k\inℤ\).

\(1+tanx=2\left(sinx+cosx\right)\)

\(\Leftrightarrow cosx+sinx=2cosx\left(sinx+cosx\right)\)

\(\Leftrightarrow\orbr{\begin{cases}sinx+cosx=0\\cosx=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}cosx=cos\left(-x-\frac{\pi}{2}\right)\\cosx=cos\frac{\pi}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm\left(-x-\frac{\pi}{2}\right)+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-\pi}{4}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{cases}},\left(k\inℤ\right)\)(thỏa mãn) 

6 tháng 7 2021

\(1+\tan x=2\left(\sin x+\cos x\right)\)

Bạn áp dụng đẳng thức lượng giác nhé : 

 \(\frac{\sin x+\cos x}{\cos x}=2\sin x+2\cos x\)

Biệt thức : 

\(D=b^2-4ac\)

\(\Leftrightarrow\left(-1\right)^2-4\left(1.1\right)=-3\)

Phương trình không có nghiệm thực : 

\(D< 0\)

Nghiệm tuần hoàn : 

\(2\pi k-\frac{\pi}{4}\)

\(2\pi k+\frac{3\pi}{4}\)

\(2\pi k+\frac{\pi}{3}\)

\(2\pi k-\frac{\pi}{3}\)

              Ps : không hiểu chỗ nào thì bạn hỏi mình nhé, nhớ k :33

                                                                                                                                              # Aeri # 

16 tháng 6 2021

    1 + sinx + cosx + sin2x + cos2x = 0

<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0

<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0

<=> 2cosx ( cos x + sinx) + sinx + cosx = 0

<=> ( cosx + sinx ) (2 cos x + 1 ) = 0

<=> cosx + sinx = 0 hoặc 2cosx + 1 =0

 

14 tháng 2 2019

Chọn C

Bổ trợ kiến thức: Ta có thế gii bng máy tính cm tay CASIO fx-570VN PLUS như sau, đu tiên dùng lệnh SHIFT SOLVE để xem 1 nghiệm bất kì có th có ca phương trình đã cho:

Tiếp theo ta tính cos x thì dễ thấy được:

Đến đây ta d dàng chọn được phương án C là phương án đúng thay cho lời giải t luận nhiều phức tạp.

31 tháng 5 2021

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

3 tháng 7 2019

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

11 tháng 9 2016

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

III. Phương trình bậc nhất đối với sinx và cosx:*Giải các phương trình bậc nhất đối với sinx và cosx sau...
Đọc tiếp

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

23
NV
30 tháng 7 2021

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
30 tháng 7 2021

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)