K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

19 tháng 2 2019

a) \(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\end{matrix}\right.\) \(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\\dfrac{x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4xy\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5\left(x+y\right)=4\left(5y-5x\right)\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y=20y-20x\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x+5y-20y+20x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-15y+25x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\-5\left(3y-5x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\3y-5x=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-5x=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5y-3y=xy\\5x=3y\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2y=xy\\5x=3y\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\)

19 tháng 2 2019

b) \(\left\{{}\begin{matrix}\dfrac{1}{2x-3y}+\dfrac{5}{3x+y}=\dfrac{5}{8}\\\dfrac{2}{2x-3y}-\dfrac{5}{3x+y}=\dfrac{-3}{8}\end{matrix}\right.\)

Đặt \(\dfrac{1}{2x-3y}=a;\dfrac{1}{3x+y}=b\)

=> hpt <=> \(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b=\dfrac{-3}{8}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\2a-5b+a+5b=\dfrac{-3}{8}+\dfrac{5}{8}=0,25\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\3a=0,25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+5b=\dfrac{5}{8}\\a=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\dfrac{1}{12}\\b=\dfrac{13}{120}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x-3y}=\dfrac{1}{12}\\\dfrac{1}{3x+y}=\dfrac{13}{120}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=12\\3x+y=\dfrac{120}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{516}{143}\\y=-\dfrac{228}{143}\end{matrix}\right.\)

27 tháng 12 2021

\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

12 tháng 1 2019
https://i.imgur.com/NPx7OjZ.jpg
12 tháng 1 2019
https://i.imgur.com/cKHt1qr.jpg
9 tháng 10 2021

6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)

8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y

(Các câu khác tương tự nhé.)