Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{n+19}{n-2}\)rút gọn được thì ƯCLN(n+19;n-2) \(\ne\)1
Gọi ƯCLN(n+19;n-2) = d
n + 19 chia hết cho d
=> (n-2)+21 chia hết cho d
n - 2 chia hết cho d
=> (n-2)+21-(n-2) chai hết cho n - 2
21 chia hết cho n - 2
n - 2 \(\inƯ\left(21\right)\)
\(n-2\in\left\{1;3;7;21\right\}\)
\(\Rightarrow n\in\left\{3;5;9;23\right\}\)
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
=> 2n+3 cà 4n+1 có ước chung là 1
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
gọi d là ước nguyên tố chung của 3n + 2 và 7n + 1
ta có : 3n + 2 : hết cho d ; 7n + 1 : hết cho d
=> 7( 3n + 2) : hết cho d ; 3( 7n + 1) : hết cho d
=> ( 21n + 14) - ( 21n + 3) : hết cho d
=> 11 : hết cho d
=> d = 11
ta có : 3n + 2 : hết cho 11
=> 3n + 11 - 9 : hết cho 11
=> 3n - 9 : hết cho 11
=> 3n ko : hết cho 11
vì ( 3 ; 11) = 1
=> n ko : hết cho 11
=> n \(\in\)11k => p/s tối giản
Gọi ƯCLN ( 3n + 2 / 7n+ 1) là d . Ta có :
3n + 2 chia hết cho d => 6n + 4 chia hết cho d
7n + 1 chia hết cho d
=> 6n + 4 - ( 7n + 1 ) chia hết cho d
=> đến đây tự làm mk chịu !!!!!