Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
\(C=\dfrac{-5}{7}+\dfrac{-2}{7}+\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{-1}{5}=-1+1-\dfrac{1}{5}=\dfrac{-1}{5}\)
a) \(x=\dfrac{-2}{7}+\dfrac{9}{7}=1\)
b) \(\dfrac{x}{3}=\dfrac{2}{5}+\dfrac{-4}{3}\)
\(\dfrac{x}{3}=\dfrac{-14}{15}\)
\(\Rightarrow x=\dfrac{3.-14}{15}=\dfrac{-14}{5}\)
\(x=\dfrac{-2}{7}+\dfrac{9}{7}\)
\(x=1\)
\(\dfrac{-1}{12},\dfrac{-3}{4},\dfrac{2}{9},\dfrac{7}{6}\)
\(\dfrac{2x-1}{3}=\dfrac{2-x}{-2}\)
\(\Rightarrow-2\left(2x-1\right)=3\left(2-x\right)\)
\(\Rightarrow-4x+2=6-3x\Rightarrow x=-4\)
\(\dfrac{3}{7}.\dfrac{5}{9}+\dfrac{4}{9}.\dfrac{-3}{7}+\left(-2023^0\right)\)
\(=\left(\dfrac{3}{7}.\dfrac{5}{9}\right)+\left(\dfrac{4}{9}.\dfrac{-3}{7}\right)+\left(-1\right)\)
\(=\dfrac{5}{21}+\dfrac{-4}{21}+\left(-1\right)\)
\(=\dfrac{5}{21}+\dfrac{-4}{21}+\dfrac{-21}{21}\)
\(=\dfrac{5-4-21}{21}=\dfrac{-20}{21}\)
\(B=\dfrac{\dfrac{2}{3}\left(\dfrac{17}{3}-\dfrac{4}{13}\right)+\dfrac{7}{3}}{\dfrac{9}{20}}=3:\dfrac{9}{20}=3\cdot\dfrac{20}{9}=\dfrac{60}{9}=\dfrac{20}{3}\)
Ta có: \(\dfrac{-5}{13}\cdot\dfrac{3}{7}-\dfrac{2}{17}\cdot\dfrac{8}{13}+\dfrac{5}{13}\cdot\dfrac{1}{7}\)
\(=\dfrac{5}{13}\left(-\dfrac{3}{7}+\dfrac{1}{7}\right)-\dfrac{2}{17}\cdot\dfrac{8}{13}\)
\(=\dfrac{5}{13}\cdot\dfrac{-2}{7}-\dfrac{2}{17}\cdot\dfrac{8}{13}\)
\(=\dfrac{-10}{91}-\dfrac{16}{221}\)
\(=\dfrac{-282}{1547}\)