K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2020

M chia hết cho 19 nên  9a + 11b⋮19 5b + 11a⋮19 9a + 11b⋮19;11a + 5b⋮19 Đến đây ta xét 3 trường hợp:    Trường hợp 1: Cả 2 số 9a+11b và 11a+5b chia hết cho 19, khi đó M chia hết cho 19*19=361, bài toán được giải xong.    Trường hợp 2: 9a+11b chia hết cho 19, ta sẽ chứng minh 5b+11a cũng chia hết cho 19 Ta có:           11 11a + 5b = 121a + 55b = 5 11b + 9a + 76a Nhân thấy 76a =19x4xa chia hết cho 19 và 5(11b+9a) chia hết cho 19 (theo giả thiết đang xét) Do đó 11 11a + 5b ⋮19⇒11a + 5b⋮19 (do 11 và 19 nguyên tDo đó 11 9a + 11b ⋮19⇒9a + 11b⋮19 (do 9 và 19 nguyên tố cùng nhau) Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19 Vậy M chia hết cho 19 thì M cũngố cùng nhau) Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19 và  chia hết cho 361

8 tháng 12 2018

Chào em, em giải bài này như sau nhé (bài nào khó hỏi anh nha)

M chia hết cho 19 nên \(\hept{\begin{cases}9a+11b⋮19\\5b+11a⋮19\\9a+11b⋮19;11a+5b⋮19\end{cases}}\)

Đến đây ta xét 3 trường hợp:

   Trường hợp 1: Cả 2 số 9a+11b và 11a+5b chia hết cho 19, khi đó M chia hết cho 19*19=361, bài toán được giải xong.

   Trường hợp 2: 9a+11b chia hết cho 19, ta sẽ chứng minh 5b+11a cũng chia hết cho 19

Ta có:

         \(11\left(11a+5b\right)=121a+55b=5\left(11b+9a\right)+76a\)

Nhân thấy 76a =19x4xa chia hết cho 19 và 5(11b+9a) chia hết cho 19 (theo giả thiết đang xét)

Do đó\(11\left(11a+5b\right)⋮19\Rightarrow11a+5b⋮19\)(do 11 và 19 nguyên tố cùng nhau)

Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19

Trường hợp 3: 5b+11a chia hết cho 19, ta sẽ chứng minh 9a+11b chia hết cho 19

Ta có: \(11\cdot\left(9a+11b\right)=99a+121b=9\left(11a+5b\right)+76b\)

Nhân thấy 76b =19x4xb chia hết cho 19 và 9(5b+11a) chia hết cho 19 (theo giả thiết đang xét)

Do đó\(11\left(9a+11b\right)⋮19\Rightarrow9a+11b⋮19\)(do 9 và 19 nguyên tố cùng nhau)

Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19

Vậy M chia hết cho 19 thì M cũng chia hết cho 361

25 tháng 12 2018

Bài này khó nhỉ 

Nghe nói bài này sẽ có trong thi

18 tháng 6 2020

Ta có: \(9a+11b⋮19\)

<=> \(11\left(9a+11b\right)⋮19\)

<=> \(99a+121b⋮19\)

<=> \(99a+45b+4.19b⋮19\)

<=> \(9\left(11a+5b\right)⋮19\)

<=> \(11a+5b⋮19\)

Do đó: 9a + 11b chia hết cho 19 thì 5b + 11a chia hết cho 19 và ngược lại

Ta có: M = (9a + 11b) . (5b + 11a) chia hết cho 19 vì 19 là số nguyên tố

=> ít nhất 1 trong hai số: 9a + 11b và 5b + 11a chia hết cho 19 

+) Nếu 9a + 11b chia hết cho 19 => 5b + 11a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361

+) +) Nếu 11a + 5b chia hết cho 19 => 11b + 9a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361

Vậy M chia hêt cho 361