Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào em, em giải bài này như sau nhé (bài nào khó hỏi anh nha)
M chia hết cho 19 nên \(\hept{\begin{cases}9a+11b⋮19\\5b+11a⋮19\\9a+11b⋮19;11a+5b⋮19\end{cases}}\)
Đến đây ta xét 3 trường hợp:
Trường hợp 1: Cả 2 số 9a+11b và 11a+5b chia hết cho 19, khi đó M chia hết cho 19*19=361, bài toán được giải xong.
Trường hợp 2: 9a+11b chia hết cho 19, ta sẽ chứng minh 5b+11a cũng chia hết cho 19
Ta có:
\(11\left(11a+5b\right)=121a+55b=5\left(11b+9a\right)+76a\)
Nhân thấy 76a =19x4xa chia hết cho 19 và 5(11b+9a) chia hết cho 19 (theo giả thiết đang xét)
Do đó\(11\left(11a+5b\right)⋮19\Rightarrow11a+5b⋮19\)(do 11 và 19 nguyên tố cùng nhau)
Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19
Trường hợp 3: 5b+11a chia hết cho 19, ta sẽ chứng minh 9a+11b chia hết cho 19
Ta có: \(11\cdot\left(9a+11b\right)=99a+121b=9\left(11a+5b\right)+76b\)
Nhân thấy 76b =19x4xb chia hết cho 19 và 9(5b+11a) chia hết cho 19 (theo giả thiết đang xét)
Do đó\(11\left(9a+11b\right)⋮19\Rightarrow9a+11b⋮19\)(do 9 và 19 nguyên tố cùng nhau)
Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19
Vậy M chia hết cho 19 thì M cũng chia hết cho 361
Ta có: \(9a+11b⋮19\)
<=> \(11\left(9a+11b\right)⋮19\)
<=> \(99a+121b⋮19\)
<=> \(99a+45b+4.19b⋮19\)
<=> \(9\left(11a+5b\right)⋮19\)
<=> \(11a+5b⋮19\)
Do đó: 9a + 11b chia hết cho 19 thì 5b + 11a chia hết cho 19 và ngược lại
Ta có: M = (9a + 11b) . (5b + 11a) chia hết cho 19 vì 19 là số nguyên tố
=> ít nhất 1 trong hai số: 9a + 11b và 5b + 11a chia hết cho 19
+) Nếu 9a + 11b chia hết cho 19 => 5b + 11a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361
+) +) Nếu 11a + 5b chia hết cho 19 => 11b + 9a chia hết cho 19 => M chia hết cho 19.19 hay M chia hết cho 361
Vậy M chia hêt cho 361
M chia hết cho 19 nên 9a + 11b⋮19 5b + 11a⋮19 9a + 11b⋮19;11a + 5b⋮19 Đến đây ta xét 3 trường hợp: Trường hợp 1: Cả 2 số 9a+11b và 11a+5b chia hết cho 19, khi đó M chia hết cho 19*19=361, bài toán được giải xong. Trường hợp 2: 9a+11b chia hết cho 19, ta sẽ chứng minh 5b+11a cũng chia hết cho 19 Ta có: 11 11a + 5b = 121a + 55b = 5 11b + 9a + 76a Nhân thấy 76a =19x4xa chia hết cho 19 và 5(11b+9a) chia hết cho 19 (theo giả thiết đang xét) Do đó 11 11a + 5b ⋮19⇒11a + 5b⋮19 (do 11 và 19 nguyên tDo đó 11 9a + 11b ⋮19⇒9a + 11b⋮19 (do 9 và 19 nguyên tố cùng nhau) Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19 Vậy M chia hết cho 19 thì M cũngố cùng nhau) Khi đó M chia hết cho 19*19=361 vì cả 9a+11b và 11a+5b đều chia hết cho 19 và chia hết cho 361