K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

a.

\(sin\left(2x-\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\) (1)

\(-\dfrac{\pi}{3}\le x\le\dfrac{7\pi}{3}\Rightarrow-\dfrac{\pi}{3}\le-\dfrac{\pi}{8}+k\pi\le\dfrac{7\pi}{3}\)

\(\Rightarrow-\dfrac{5}{24}\le k\le\dfrac{59}{24}\Rightarrow k=\left\{0;1;2\right\}\)

Thế vào (1) \(\Rightarrow x=\left\{-\dfrac{\pi}{8};\dfrac{7\pi}{8};\dfrac{15\pi}{8}\right\}\)

30 tháng 7 2021

Câu b lm ntn ạ 

7 tháng 9 2021

5.

\(sin\left(60^o+2x\right)=-1\)

\(\Leftrightarrow60^o+2x=-90^o+k.360^o\)

\(\Leftrightarrow x=-75^o+k.180^o\)

6.

\(sin\left(2x+1\right)=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=arcsin\dfrac{1}{3}+k2\pi\\2x+1=\pi-arcsin\dfrac{1}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arcsin\dfrac{1}{3}-\dfrac{1}{2}+k\pi\\x=\dfrac{\pi}{2}-\dfrac{1}{2}arcsin\dfrac{1}{3}-\dfrac{1}{2}+k\pi\end{matrix}\right.\)

7 tháng 9 2021

Cách làm : 

sina = \(\dfrac{1}{2}\) ⇔ \(\left[{}\begin{matrix}a=\dfrac{\pi}{6}+k2\pi\\a=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

sina = \(-\dfrac{\sqrt{3}}{2}\) ⇔ \(\left[{}\begin{matrix}a=-\dfrac{\pi}{3}+k2\pi\\a=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

sina = 1 ⇔ \(a=\dfrac{\pi}{2}+k.2\pi\)

sina = 0 ⇔ \(a=k\pi\)

sina = -1 ⇔ \(a=-\dfrac{\pi}{2}+k.2\pi\)

sina = \(\dfrac{1}{3}\) ⇔ \(\left[{}\begin{matrix}a=arcsin\left(\dfrac{1}{3}\right)+k2\pi\\a=\pi-arcsin\left(\dfrac{1}{3}\right)+k2\pi\end{matrix}\right.\)

Với a là một đa thức xác định trên R

NV
1 tháng 6 2021

Theo nguyên lý Dirichlet, nếu số chữ số 3 lớn hơn 5 thì luôn có ít nhất 2 chữ số 3 đứng cạnh nhau (ko thỏa mãn).

- Nếu ko có chữ số 3 nào: có đúng 1 số

- Nếu có 1 chữ số 3: xếp 9 chữ số 2 tạo ra 10 khe trống, có \(C_{10}^1\) cách đặt số 3 vào các khe trống đó \(\Rightarrow\) 10 số

- Nếu có 2 chữ số 3 (và 8 chữ số 2): xếp 8 chữ số 2 tạo thành 9 khe trống, xếp 2 chữ số 3 vào 9 khe trống đó: \(C_9^2=36\) số

- Nếu có 3 chữ số 3 và 7 chữ số 2: xếp 7 chữ số 2 tạo thành 8 khe trống, xếp 3 chữ số 3 vào 8 khe trống: \(C_8^3=...\)

Làm tương tự, nói chung kết quả sẽ là: \(C_{11}^0+C_{10}^1+C_9^2+C_8^3+C_7^4+C_6^5=...\)

\(A=\dfrac{4sin^2a}{1-cos^2a}:2=4:2=2\)

 

NV
18 tháng 10 2020

a/

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(\Leftrightarrow3tan^2x+8tanx+8\sqrt{3}-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k\pi\end{matrix}\right.\)

b/

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(tan^2x+2tanx-2=\frac{1}{2}\left(1+tan^2x\right)\)

\(\Leftrightarrow tan^2x+4tanx-5=0\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-5\right)+k\pi\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(sinx+1\right)\left(1-2sin^2x-1\right)=0\)

\(\Leftrightarrow sin^2x\left(sinx+1\right)=0\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)