Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15:
a: \(\text{Δ}=\left(m^2-m+2\right)^2-4m^2\)
=(m^2-m+2-2m)(m^2-m+2+2m)
=(m^2+m+2)(m^2-3m+2)
=(m-1)(m-2)(m^2+m+2)
Để phương trình co hai nghiệm phân biệt thì (m-1)(m-2)(m^2+m+2)>0
=>(m-1)(m-2)>0
=>m>2 hoặc m<1
b: x1+x2=m^2-m+2>0 với mọi m
x1*x2=m^2>0 vơi mọi m
=>Phương trình luôn có hai nghiệm dương phân biệt
a) \(\sqrt{x}\)< \(\sqrt{2x-1}\)
x < 2x - 1
x - 2x < -1
-x < -1
x > 1
b) \(\sqrt{x}\le\sqrt{x+1}\)
x < x + 1
0 < 1
không có x tm
a) Thay m=3 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-3\cdot\dfrac{3}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy: Khi m=3 thì hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{6}{5};\dfrac{3}{5}\right)\)
\(\left\{{}\begin{matrix}2y-3x=7\\y+4x=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y-12x=28\\3y+12x=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}11y=55\\y+4x=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5\\5+4x=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=1\end{matrix}\right.\)
Vậy nghiệm hpt: \(\left(x;y\right)=\left(1;5\right)\)