Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a)
Có: \(\left\{\begin{matrix} (x+y)^2+3y^2=7\\ x+2y(x+1)=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2+4y^2+2xy=7\\ x+2y=5-2xy\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x^2+4y^2+2xy=7\\ x^2+4y^2+4xy=(5-2xy)^2\end{matrix}\right.\)
Lấy PT(2) trừ PT(1) thu được:
\(2xy=(5-2xy)^2-7\)
\(\Leftrightarrow 2(xy)^2-11xy+9=0\)
\(\Rightarrow xy=\frac{9}{2}\) hoặc \(xy=1\) hay \(\left[\begin{matrix} 2xy=9\\ 2xy=2\end{matrix}\right.\)
Nếu \(2xy=9\Rightarrow x+2y=5-2xy=-4\)
Theo định lý Viete đảo thì $x,2y$ là nghiệm của PT:
\(X^2+4X+9=0\)\(\Leftrightarrow (X+2)^2+5=0\) (vl)
Nếu \(2xy=2\Rightarrow x+2y=5-2xy=3\)
Theo định lý Viete đảo thì $x,2y$ là nghiệm của PT:
\(X^2-3X+2=0\Rightarrow (x,2y)=(2,1); (1,2)\)
\(\Rightarrow (x,y)=(2,\frac{1}{2}); (1; 1)\)
Câu b:
\(\left\{\begin{matrix} x(y-1)+2y=x(x+1)(1)\\ \sqrt{2x-1}+xy-3y+1=0(2)\end{matrix}\right.\)
Từ \((1)\Leftrightarrow y(x+2)=x(x+1)+x\)
\(\Leftrightarrow y(x+2)=x(x+2)\Leftrightarrow (x+2)(y-x)=0\)
\(\Rightarrow \left[\begin{matrix} x=-2\\ x=y\end{matrix}\right.\)
Nếu \(x=-2\) thay vào (2) thấy ngay vô lý vì ĐKXĐ là \(x\geq \frac{1}{2}\)
Nếu \(x=y\), thay vào (2): \(\sqrt{2x-1}+x^2-3x+1=0\)
\(\Leftrightarrow (\sqrt{2x-1}-x)+(x^2-2x+1)=0\)
\(\Leftrightarrow \frac{2x-1-x^2}{\sqrt{2x-1}+x}+(x-1)^2=0\)
\(\Leftrightarrow (x-1)^2\left[1-\frac{1}{\sqrt{2x-1}+x}\right]=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ \sqrt{2x-1}+x=1\end{matrix}\right.\)
Với trường hợp \(\sqrt{2x-1}+x=1(x\leq 1)\Rightarrow \sqrt{2x-1}=1-x\)
\(\Rightarrow 2x-1=(1-x)^2=x^2-2x+1\)
\(\Leftrightarrow x^2-4x+2=0\Rightarrow x=2\pm \sqrt{2}\). Vì \(\frac{1}{2}\leq x\leq 1\Rightarrow x=2-\sqrt{2}\)
Vậy \((x,y)=(1,1); (2-\sqrt{2}; 2-\sqrt{2})\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(2x^2+y\right)\left(x+y\right)-2x^2-y=0\)
\(\Leftrightarrow\left(2x^2+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2x^2\\y=1-x\end{matrix}\right.\)
Thế xuống pt dưới ...