Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: $x\geq 1; y\geq 2; z\geq 3$
PT \(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow [(x-1)-2\sqrt{x-1}+1]+[(y-2)-4\sqrt{y-2}+4]+[(z-3)-6\sqrt{z-3}+9]=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
\(\Rightarrow \sqrt{x-1}-1=\sqrt{y-2}-2=\sqrt{z-3}-3=0\)
\(\Leftrightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
2.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow \sqrt{x+1}=1-\sqrt{x}$
$\Rightarrow x+1=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}=0$
$\Leftrightarrow x=0$
Thử lại thấy thỏa mãn
Vậy $x=0$
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)
\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)
\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)
Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)
Giải
Ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)
Tương tự cho 2 BĐT còn lại ta có:
\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)
thay 2016=xy+yz+xz vào các mẫu
dùng Cô-Si đảo vào từng phân số
sẽ dễ dàng chứng minh đc :D
\(\left(\sqrt{x-2016}-2\right)^2+\left(\sqrt{y-2016}-2\right)^2+\left(\sqrt{z-2016}-2\right)=0..\)
=> x=y=z = 2020