Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+3xy=1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y-1=0\\x=y=-1\end{matrix}\right.\)
TH1: \(x=y=-1\) thế vào pt dưới kiểm tra ko thỏa mãn
TH2: \(y=1-x\) thế vào pt dưới:
\(\sqrt{\left(4-x\right)\left(x+12\right)}=\dfrac{27}{x+3}\) (ĐKXĐ: \(-12\le x\le4;x\ne-3\))
- Với \(x< -3\) pt vô nghiệm, với \(x>-3\)
Đặt \(x+3=t>0\)
\(\Rightarrow\sqrt{\left(t+9\right)\left(7-t\right)}=\dfrac{27}{t}\Leftrightarrow64-\left(t+1\right)^2=\dfrac{27^2}{t^2}\)
\(\Leftrightarrow64=\dfrac{27^2}{t^2}+\left(t+1\right)^2=\dfrac{25^2}{t^2}+t^2+\dfrac{104}{t^2}+t+t+1\ge2\sqrt{\dfrac{25^2t^2}{t^2}}+3\sqrt[3]{\dfrac{104t^2}{t^2}}+1>65\) (vô lý)
Vậy hệ vô nghiệm
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{matrix}\right.\)
\(\Rightarrow4x^2-13xy+3y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(4x-y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3y\\y=4x\end{matrix}\right.\)
Thay vào pt sau: \(\left[{}\begin{matrix}y^2-3y.y=4\left(vn\right)\\\left(4x\right)^2-3x.4x=4\end{matrix}\right.\)
\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=4\\x=-1;y=-4\end{matrix}\right.\)
b/
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)
\(\Rightarrow3x^2-8xy+4y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=2y\\x=\frac{2}{3}y\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2\left(2y\right)^2-3.2y.y+y^2=3\\2\left(\frac{2}{3}y\right)^2-3.\frac{2}{3}y.y+y^2=3\end{matrix}\right.\) bạn tự giải nốt
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x-1\right)^2+\left(y-1\right)^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\\left(x+y-2\right)^2-2\left(x-1\right)\left(y-1\right)=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=v\\x+y-2=u\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv=6\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2-\dfrac{12}{u}=5\)
\(\Rightarrow u^3-5u-12=0\)
\(\Leftrightarrow\left(u-3\right)\left(u^2+3u+4\right)=0\)
\(\Leftrightarrow u=3\Rightarrow v=2\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-2=3\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=5-x\\\left(x-1\right)\left(y-1\right)=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)\left(5-x-1\right)=2\)
\(\Leftrightarrow...\) em tự hoàn thành bài toán
\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)^2-2xy=4\)
\(\Leftrightarrow xy\left(x+y-2\right)+\left(x+y-2\right)\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+y+xy+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-2=0\left(1\right)\\x+y+xy+2=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow y=2-x\) thay vào pt đầu: ....
Xét (2): kết hợp với pt đầu ta được:
\(\left\{{}\begin{matrix}x+y+xy+2=0\\\left(x+y\right)^3-3xy\left(x+y\right)-3xy=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+2=0\\a^3-3ab-3b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1\right)-3b\left(a+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+2=0\\\left(a+1\right)\left(a^2-a+1-3b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)