K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Đặt: \(\left\{{}\begin{matrix}\frac{1}{x+y}=a\\\frac{1}{x-y}=b\end{matrix}\right.\)

Hệ đã cho trở thành: \(\left\{{}\begin{matrix}108b+63a=7\\81b+84a=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{27}\\b=\frac{1}{21}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{x+y}=\frac{1}{27}\Rightarrow x+y=27\)

Và: \(\frac{1}{x-y}=\frac{1}{21}\Rightarrow x-y=21\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy ................

cielxelizabeth -_- Máy tình để làm gì nhỉ?

25 tháng 5 2017

Đặt ẩn phụ ^_^

14 tháng 3 2020

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\)

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-163b=-489\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a+9.3=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là (x;y) = (\(\frac{1}{2};\frac{1}{3}\))

9 tháng 2 2020

a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy..............................................................................

b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)

Vậy...................................................................................

c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)

\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)

Vậy hệ pt vô nghiệm

d) Nhân 3 pt đầu rồi thu gọn

NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

AH
Akai Haruma
Giáo viên
19 tháng 1 2017

Bài này đơn giản thôi :))

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{x+y}{xy}=\frac{3}{2}\\ \frac{y+z}{yz}=\frac{2}{3}\\ \frac{x+z}{xz}=\frac{7}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\ \frac{1}{y}+\frac{1}{z}=\frac{2}{3}\\ \frac{1}{x}+\frac{1}{z}=\frac{7}{6}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}=\frac{3}{2}+\frac{7}{6}-\frac{2}{3}\\ \frac{2}{y}=\frac{3}{2}+\frac{2}{3}-\frac{7}{6}\\ \frac{2}{z}=\frac{2}{3}+\frac{7}{6}-\frac{3}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=6\end{matrix}\right.\)

Vậy $(x,y,z)=(1,2,6)$ là nghiệm của hệ phương trình