Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\left(1\right)\Leftrightarrow x\left(x+2\right)+y\left(y+2\right)=11\)
Đặt a=x(x+2); b=y(y+2) thì: \(hpt\Leftrightarrow\hept{\begin{cases}a+b=11\\ab=24\end{cases}}\)
Khi đó a,b là 2 nghiệm của pt ẩn m:
\(m^2-11m+24=0\Leftrightarrow\left(m-8\right)\left(m-3\right)=0\Rightarrow\hept{\begin{cases}m=8\\m=3\end{cases}}\)
Tới đây bn tự làm tiếp.
\(\Leftrightarrow\frac{x^2+y^2}{3xy}=\frac{13}{18}\)
<=>18(x2+y2)=39xy
<=>6x2-13xy+6y2=0
<=>(2x-3y)(3x-2y)=0
<=>2x=3y hoặc 3x=2y
với 2x=3y
\(\Rightarrow\frac{1}{x}+\frac{1}{\frac{2x}{3}}=\frac{5}{18}\Rightarrow\frac{1}{x}+\frac{3}{2x}=\frac{5}{18}\)
\(\Rightarrow\frac{5}{2x}=\frac{5}{18}\Rightarrow x=9;y=6\)
với 3x=2y
\(\Rightarrow\frac{1}{\frac{2y}{3}}+\frac{1}{y}=\frac{5}{18}\Rightarrow\frac{3}{2y}+\frac{1}{y}=\frac{5}{18}\)
\(\Rightarrow\frac{5}{2y}=\frac{5}{18}\Rightarrow y=9;x=6\)
Vậy nghiệm của phương trình (x;y)=(6;9);(9;6)
Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )
=> A = a + 1/a
(*) \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức )
=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)
TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Vậy GTNN của A là 10/3 tại x = y= 1