Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài: Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).
Giải:
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).
\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).
+) TH1: \(x=y+2\): Thay vào (2) ta được:
\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)
\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)
\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)
\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)
\(\Leftrightarrow16y^4+57y^2=0\)
\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).
+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):
\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).
Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).
Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).
Thử lại không có gt nào thỏa mãn.
Vậy...
đkxđ: \(x,y\ne0\)
Biến đổi hệ thành:
\(\hept{\begin{cases}x+\frac{2}{x}+\frac{1}{y}=4\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\\\frac{1}{x}\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{x}{y}+\frac{x}{x}\right)=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\\\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)
Vậy hệ đã cho có nghiệm (x;y)=(1;1)