Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt $(1)$ và $(2)$ có nghiệm thì \(\left\{\begin{matrix} \Delta(1)=25-4k\geq 0\\ \Delta(2)=49-8k\geq 0\end{matrix}\right.\Leftrightarrow k\leq \frac{49}{8}\)
Gọi $t$ là nghiệm $(1)$ thì yêu cầu đề bài được xử lý khi $2t$ là nghiệm của $(2)$
\(\Leftrightarrow \left\{\begin{matrix} t^2-5t+k=0\\ (2t)^2-14t+2k=0\end{matrix}\right.\)
\(\Rightarrow 2(t^2-5t)-4t^2+14t=0\)
$\Leftrightarrow t=0$ hoặc $t=2$.
Nếu $t=0$ thì hiển nhiên loại
Nếu $t=2$ thì $k=6$.
Thử lại thấy thỏa mãn.
Gọi nghiệm của phương trình (2) là x0 (x0 ≠ 0)
thì nghiệm phương trình (1) là 2x0
Thay x0; 2x0 lần lượt vào phương trình (2) và (1)
ta được
2 x 0 2 − 13.2 x 0 + 2 m = 0 x 0 2 − 4 x 0 + m = 0
⇔ 4 x 0 2 − 26 x 0 + 2 m = 0 x 0 2 − 4 x 0 + m = 0 ⇔ 4 x 0 2 − 26 x 0 + 2 m = 0 4 x 0 2 − 16 x 0 + 4 m = 0
⇔ 10x0 = −2m ⇔ x 0 = − m 5
Do x0 ≠ 0 nên m ≠ 0
Thay x 0 = − m 5 vào phương trình (2)
ta được − m 5 2 − 4. − m 5 + m = 0
⇔ m 2 25 + 4 m 5 + m = 0
⇔ m 2 25 + 9 m 5 = 0 ⇒ m = 0 m = − 45
Kết hợp m ≠ 0 ta được m = −45
Đáp án cần chọn là: A
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
a) Thay x=0 vào phương trình, ta được:
\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)
\(\Leftrightarrow m+1=0\)
hay m=-1
Áp dụng hệ thức Vi-et, ta có:
\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)
\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)
a: Khi m=2 thì (1) sẽ là x^2-5x+4=0
=>x=1; x=4
b: Δ=(-5)^2-4(m+2)=25-4m-8=17-4m
Để (1) có hai nghiệm phân biệt thì 17-4m>0
=>m<17/4
Phương trình (m – 2)x2 – 2(m + 1)x + m = 0
có a = m – 2; b’ = − (m + 1); c = m
Suy ra Δ ' = [−(m + 1)]2 – (m – 2).m = 4m + 1
TH1: m – 2 = 0 ⇔ m = 2
⇒ −6x + 2 = 0 ⇒ x = 1 3
Với m = 2 thì phương trình có một nghiệm x = 1 3
TH2: m – 2 ≠ 0 ⇔ m ≠ 2
Để phương trình có nghiệm kép thì:
a ≠ 0 Δ ' = 0 ⇔ m ≠ 2 4 m + 1 = 0 ⇔ m ≠ 2 m = − 1 4 ⇔ m = − 1 4
Vậy m = 2; m = − 1 4 và m = 2 là giá trị cần tìm
Đáp án cần chọn là: B
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`