Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là chiều dài, b là chiều rộng (a, b m; a> b > 0)
Diện tích HCN là S= ab
Nếu tăng mỗi cạnh lên 5m thì S tăng 225 m2m2
=> (a+5)(b+5)= ab+ 225
<=> ab+ 5a+ 5b+ 25= ab+ 225
<=> a+b= 40 (1)
Nếu tăng chiều rộng 2m, giảm chiều dài 5m thì S không đổi
=> (a-5)(b+2)= ab
<=> ab+ 2a - 5b -10= ab
<=> 2a - 5b= 10 (2)
(1)(2) => a= 30; b= 10 (TM)
Vậy chu vi HCN là (30+10).2= 80m
Gọi \(x\left(m\right)\) là chiều dài ban đầu của mảnh đất \(\left(x>6\right)\)
\(y\left(m\right)\) là chiều rộng ban đầu của mảnh đất \(\left(y>0\right)\)
Vì chu vi mảnh vườn là 48m nên:
\(\left(x+y\right).2=48\\ \Leftrightarrow x+y=24\left(1\right)\)
Vì nếu tăng chiều rộng 4m và giảm chiều dài 6m thì diện tích tăng 12 mét vuông nên:
\(\left(x-6\right)\left(y+4\right)=xy+12\\ \Leftrightarrow xy+4x-6y-24=xy+12\\ \Leftrightarrow4x-6y=36\left(2\right)\)
Từ (1) và (2) ta có hpt \(\left\{{}\begin{matrix}x+y=24\\4x-6y=36\end{matrix}\right.\)
Giải hpt ta được \(\left\{{}\begin{matrix}x=18\\y=6\end{matrix}\right.\) (nhận)
Vậy chiều dài ban đầu là 18m chiều rộng ban đầu là 6m
Gọi chiều dài và chiều rộng mảnh đất lần lượt là: x và y (x>y; x,y <24)
Vì chu vi mảnh đất là 48m nên ta có PT: x+y =24 (1)
Nếu tăng chiều rộng 4m, giảm chiều dài 6m thì diên tích tăng 12m2 nên ta có PT:
(x-6)(y+4)-xy=12
⇔xy+4x-6y-24-xy=12
⇔4x-6y=36 (2)
Từ (1) và (2) ⇒HPT: \(\left\{{}\begin{matrix}x+y=24\\4x-6y=36\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=18\\y=6\end{matrix}\right.\)(TM)
Vậy chiều dài và chiều rộng mảnh đất lần lượt là 18m và 6m
gọi x (cm)là chiều dài ban đầu của hcn
y (cm) là chiều rômgj ban đầu của hcn
...CV=70 \(2\left(x+y\right)=70\Rightarrow x+y=35\left(1\right)\)
nếu chiều dài tăng.......tăng thêm 14 \(\Rightarrow PT:\left(x+3\right)\left(y-2\right)=xy+14\left(2\right)\)
từ (1) và(2) ta có hệ pt:\(\hept{\begin{cases}x+y=35\\\left(x+3\right)\left(y-2\right)=xy+14\end{cases}}\)
bạn tính đc X=17 và Y=18 .sau đó kết luận là đc ><
Gọi chiều rộng là x
Chiều dài là x+10
Theo đề, ta có: (x+11)(x-4)=x(x+10)-80
\(\Leftrightarrow x^2-4x+11x-44=x^2+10x-80\)
=>10x-80=7x-44
=>3x=36
hay x=12
Chiều dài là 12+10=22(m)
Diện tích là 12x22=264(m2)
a) Đặt chiều dài là a, chiều rộng là b ta có:
2(a+b) = 24 => a+b =12 (1)
Diện tích của mảnh đất là S= a.b
Tăng chiều dài 2m, giảm chiều rộng 1m diện tích sẽ là :
(a+2)(b-1) = a.b -a + 2b - 2
= S -a + 2b - 2= S+1
=>2b - a - 3 =0 => a = 2b -3 (2)
Thế (2) vào (1) ta có: 2b - 3 + b = 12 => 3b = 15 => b = 5, a = 12-5 = 7
Vậy chiều dài là 7m, chiều rộng là 5m
b) Tính detal = b^2 - 4ac = 4(m-1)^2 - 4(m-3)
detal = 4(m^2-2m+1) - 4m +12
= 4m^2 -12m +16
= 4(m^2-3m+4)
=4(m^2 -2.m.3/2 + 9/4 + 7/4)
=4(m-3/2)^2 + 7 >0 với mọi m
Do đó luôn có 2 nghiệm
gọi chiều dài và chiều rộng ban đầu của hcn là x ; y ( đk x > y > 0 ; đv m )
nửa chu vi hcn ban đầu là x + y = 250 : 2 = 125 (1)
nếu chiều dài tăng 15m chiều rộng giảm 15m thì diện tích giảm đi 450m2 ta có pt
( x + 15 ) (y - 15 ) = xy - 450 (2)
từ 1 và 2 ta có hpt
\(\hept{\begin{cases}x+y=125\\\left(x+15\right)\left(y-15\right)=xy-450\end{cases}}< =>\hept{\begin{cases}x+y=125\\xy-15x+15y-225=xy-450\end{cases}}\)
\(< =>\hept{\begin{cases}x+y=125\\-15x+15y=225\end{cases}}\)
\(\hept{\begin{cases}x=70\\y=55\end{cases}}\)
diện tích hcn ban đầu là
x y = 70 x 55 =3850 m2
Bài 11:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 90m nên ta có phương trình:
\(2\cdot\left(x+y\right)=90\)
\(\Leftrightarrow x+y=45\)(1)
Diện tích ban đầu của mảnh đất là: \(xy\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 2m thì diện tích giảm 140m2 nên ta có phương trình:
\(\left(x-5\right)\left(y-2\right)=xy-140\)
\(\Leftrightarrow xy-2x-5y+10-xy+140=0\)
\(\Leftrightarrow-2x-5y+150=0\)
\(\Leftrightarrow-2x-5y=-150\)
\(\Leftrightarrow2x+5y=150\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=45\\2x+5y=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y=90\\2x+5y=150\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-60\\x+y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\x=45-y=45-20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích mảnh đất là:
\(x\cdot y=25\cdot20=500\left(m^2\right)\)
Vậy: Diện tích mảnh đất là 500m2
Bài 12:
Gọi x(m) và y(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: x>0; y>0; \(x\ge y\))
Vì chu vi của mảnh đất là 80m nên ta có phương trình:
\(2\cdot\left(x+y\right)=80\)
\(\Leftrightarrow x+y=40\)(3)
Diện tích ban đầu của mảnh đất là:
\(xy\left(m^2\right)\)
Vì khi tăng chiều dài thêm 3m và tăng chiều rộng thêm 5m thì diện tích tăng thêm 195m2 nên ta có phương trình:
\(\left(x+3\right)\left(y+5\right)=xy+195\)
\(\Leftrightarrow xy+5x+3y+15-xy-195=0\)
\(\Leftrightarrow5x+3y-180=0\)
\(\Leftrightarrow5x+3y=180\)(4)
Từ (3) và (4) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=40\\5x+3y=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+5y=200\\5x+3y=180\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=20\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40-y=40-10=30\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của mảnh đất là 30m
Chiều rộng của mảnh đất là 10m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: a+b=23 và (a-5)(b+2)=ab-20
=>a+b=23 và 2a-5b=-10
=>a=15; b=8
=>Diện tích là 15*8=120m2