Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
a) Cách 1: Thực hiện nhân phá ngoặc và thu gọn, ta được:
Vậy hệ đã cho có nghiệm duy nhất là .
Cách 2: Đặt ẩn phụ.
Đặt ta có hệ phương trình mới (ẩn )
Suy ra hệ đã cho tương đương với:
Vậy hệ đã cho có nghiệm duy nhất là .
b) Thu gọn vế trái của hai phương trình, ta được:
⇔
⇔ ⇔
⇔⇔
⇔ ⇔
Vậy hệ phương trình đã cho có nghiệm duy nhất là .
Bạn kham khảo nhé.
Giải hệ phương trình (x+y)(x^2-y^2)=45 và (x-y)(x^2+y^2)=85
Xét x=y
PT(2) \(\Leftrightarrow x+2\sqrt{\left(1+x\right)\left(1-2x\right)}=2\left(1+x\right)^2\)(ĐK:....)
Đặt \(\sqrt{1+x}=a,\sqrt{1-2x}=b\left(a,b\ge0\right)\)
\(\left(2\right)\Leftrightarrow-\left(a^2+b^2\right)+2ab=2a^4\)
\(\Leftrightarrow-\left(a-b\right)^2=2a^4\)
=> a-b=a=0 => b=0
=> x=-1 , x= 1/2 (vô lí) => vô nghiệm
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?
hình như đề bài sai..mk thấy vế trái của cả 2 pt nó chả khác j nhau cả
đúng mà
có mỗi thiếu dấu = ở pt thứ 2 thôi