Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\hept{\begin{cases}x^2-4x+3=0\left(1\right)\\x^2+xy+y^2=3\left(2\right)\end{cases}}\)
Từ (1) <=> (x - 1)(x - 3) = 0 \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Với x = 3 => (2) <=> 32 + 3y + y2 = 3
<=> y2 + 3y + 6 = 0
<=> \(\left(2y+3\right)^2=-15\)<=> PT vô nghiệm
Với x = 3 => (1) <=> 12 + y + y2 = 3
<=> (y - 1)(y + 2) = 0
<=> \(\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
=> Hệ có 2 nghiệm (x ; y) = (1;1) ; (1 ; - 2)
c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)
Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)
Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)
Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)
NT: x=0; y=0 là nghiệm của hpt trên
+) Với x, y khác 0, ta chia 2 vế 2 pt của hpt cho x^2y^2, được:
\(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\frac{1}{x}+\frac{1}{y}\right)^2-\left(\frac{2}{xy}+2\right)=0\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\end{cases}}\)
Đặt : \(\frac{1}{x}+\frac{1}{y}=a;2+\frac{2}{xy}=b\)
Ta thu được:
\(\hept{\begin{cases}ab=8\\a^2-b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=4\end{cases}}\)
Theo cách đặt:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\2+\frac{2}{xy}=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}\)
+) Xét x = y = 0 thì thay vào hệ ta thấy thỏa mãn
Nhận thấy nếu \(x\ne0\)thì \(y\ne0\)và ngược lại
+) Xét \(x\ne0;y\ne0\)hệ phương trình tương đương với: \(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(1+\frac{1}{xy}\right)=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\\\left(\frac{1}{x}+\frac{1}{y}\right)\left(2+\frac{2}{xy}\right)=8\left(2\right)\end{cases}}\)
Thay (1) và (2), ta được: \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=8\Rightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=2\\\frac{1}{xy}=1\end{cases}}\Rightarrow x=y=1\)
Vậy hệ có tập nghiệm \(\left(x,y\right)\in\left\{\left(0;0\right);\left(1;1\right)\right\}\)
1) Ta có pt \(\Leftrightarrow\sqrt{x+1}+2x\sqrt{x+3}=2x+\sqrt{\left(x+1\right)\left(x+3\right)}\)
Đặt \(\sqrt{x+1}=a;\sqrt{x+3}=b\left(b>a\ge0\right)\)
Ta có pt \(\Leftrightarrow a+2xb=2x+ab\Leftrightarrow a\left(1-b\right)-2x\left(1-b\right)=0\Leftrightarrow\left(a-2x\right)\left(1-b\right)=0\)
Đến đây tự thay a,b vào rồi giải pt bậc 2 nhá !
b, trừ từng vế của 2 pt trong hệ ta có pt hệ quả có nhân tử chung là x-y