Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(p=x+y+z\)
\(q=xy+zy+zx\)
\(r=xyz\)
Ta có :
\(2q=\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=4-6=-2\Rightarrow q=-1\)
Bây giờ ta sẽ đi tìm r
Đặt \(S_n=x^n+y^n+z^n\)
Khi đó \(S_0=3\)
\(S_1=-2\)
\(S_2=6\)
Ta có :
\(S_n-\left(x+y+z\right)S_{n-1}+\left(xy+yz+zx\right)S_{n-2}-xýzS_{n-3}=0\)
Suy ra \(S_n=-2S_{n-1}+S_{n-2}+rS_{n-3}\)
Lấy n = 3, ta được :
\(S_3=-2S_2+S_1+rS_0=-14+3r\)
Lấy n = 4, ta được :
\(S_4=-2S_3+S_2+rS_1=28-6r+6-2r=34-8r\)
Lấy n = 5, ta được :
\(S_5=-2S_4+S_3+rS_2=-68+16r-14+3r+6r=-82+25r\)
Mà \(S_5=-32\) nên r = 2.
Do đó x, y, z là nghiệm của phương trình
\(t^3+2t^2-t-2=0\Leftrightarrow t\in\left\{1;-1;-2\right\}\)
Vậy nghiệm của hệ là \(\left\{1;-1;-2\right\}\) và các hoán vị của nó
\(x^2y+2y+x=4xy< =>xy\left(x+3\right)=4xy< =>x+3=4< =>x=1\)
Thế x=1 vào 1 trong 2 phương trình => y=1
3 an 2 phuong trinh cai nay toan Dai Hoc ma