Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
a/ \(\left(2x\right)^2-2.2x.3+3^2-16=0\)
\(\Leftrightarrow\left(2x-3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b/ \(x^2+2\sqrt{3}.x+\left(\sqrt{3}\right)^2-4=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\\x+\sqrt{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
c/ \(3x^2-6x+3-2=0\)
\(\Leftrightarrow3\left(x^2-2x+1\right)=2\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{\sqrt{6}}{3}\\x-1=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{6}}{3}\\x=\dfrac{3-\sqrt{6}}{3}\end{matrix}\right.\)
d/ \(\left(\sqrt{2}x\right)^2-2.2.\left(\sqrt{2}x\right)+2^2-2=0\)
\(\Leftrightarrow\left(\sqrt{2}x-2\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}x-2=\sqrt{2}\\\sqrt{2}x-2=-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{2}x=2+\sqrt{2}\\\sqrt{2}x=2-\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=\sqrt{2}-1\end{matrix}\right.\)
Hộp thư của chị có vấn đề rồi, không đọc được tin nhắn TvT
1. đặt t = \(\sqrt{\dfrac{2x+2}{x+2}}\) \(\left(t\ge0\right)\) \(\Rightarrow\dfrac{1}{t}=\sqrt{\dfrac{x+2}{2x+2}}\)
ta có: \(t-\dfrac{1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{t^2-1}{t}=\dfrac{7}{12}\)
\(\Leftrightarrow12\left(t^2-1\right)=7t\)
\(\Leftrightarrow12t^2-7t-12=0\)
\(\Leftrightarrow\left(4t+3\right)\left(3t-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+3=0\\3t-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{3}{4}\left(L\right)\\t=\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\dfrac{2x+2}{x+2}}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{2x+2}{x+2}=\dfrac{16}{9}\)
\(\Leftrightarrow x=7\)
vậy x = 7 là nghiệm của pt
bài 1: đặt ẩn hoặc liên hợp. gợi ý :x=7
bài 2: tui làm r` mà quên link bn vào đây mà tìm nè Góc học tập của Ace Legona | Học trực tuyến
Gọi số phải tìm là ab ( có gạch ngang trên đầu ) ( a,b thuộc N ; 0 < a < = 9 ; 0 < = b < = 9 )
=> a+b = 12
Khi thay đổi thứ tự hai số thì số mới là : ba
Ta có hệ pt :
a+b=12 ; ba-ab = 18
<=> a+b=12 ; 10b+a-10a-b=18
<=> a+b=12 ; 9b-9a = 18
<=> a+b=12 ; b-a = 2
<=> a=5;b=7
Vậy số phải tìm là 57
Tk mk nha
1111111111111111111111111111111111111111111111111....11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111....1111111111111111111111111111111111111111111111111111111111111111111111111111111111...111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111....111111111111111111111111111111111111111111111111111111111111111111111111111111111....111111111111111111111111111111111111111111111111111...111111111111111111111111111111111111111111