K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Mình sẽ k cho bạn nào nhanh nhất nhé <3

23 tháng 8 2019

\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)

\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)

1 tháng 8 2018

Đặt m = 1 / x - 3         và n = 1/y - 4 
Khi đó ta có hệ m + n = 5/3
4 x x - 3 x n = 3/2 
....Bạn tự giải tiếp nhé 

24 tháng 2 2020

Mk thấy đề hơi sai nhé

24 tháng 2 2020

Mình thấy trong sách viết vậy mà

Ôn tập phương trình bậc hai một ẩn

3 tháng 2 2019

ĐKXĐ \(\hept{\begin{cases}x\ne2\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-2}=a\\\frac{1}{y-1}=b\end{cases}\left(a;b\ne0\right)}\)

Hệ trở thành \(\hept{\begin{cases}a+b=2\\2a-3b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=4\\2a-3b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5b=3\\a+b=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{5}\\a=\frac{7}{5}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{7}{5}\\\frac{1}{y-1}=\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=\frac{5}{7}\\y-1=\frac{5}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{19}{7}\\y=\frac{8}{3}\end{cases}}\left(TmDKXD\right)\)

1 tháng 1 2020

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x-1+2}{x-1}+\frac{3\left(y+2\right)-6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{2}{x-1}+3-\frac{6}{y+2}=7\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x-1}-\frac{6}{y+2}=3\\\frac{2}{x-1}-\frac{5}{y+2}=4\end{matrix}\right.\)

đặt \(\left\{{}\begin{matrix}a=\frac{1}{x-1}\\b=\frac{1}{y+2}\end{matrix}\right.\) ta có : \(\left\{{}\begin{matrix}2a-6b=3\\2a-5b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=6b+3\\b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{9}{2}\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=\frac{9}{2}\\\frac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\frac{2}{9}\\y+2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{11}{9}\\y=-1\end{matrix}\right.\)

20 tháng 5 2017

Thích đặt ẩn phụ thì đặt vậy

Đặt \(\frac{1}{\sqrt{1-x^2}}=a\left(a>0\right)\)  thì PT trở thành

\(a^2=3a-1\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3+\sqrt{5}}{2}\\a=\frac{3-\sqrt{5}}{2}\end{cases}}\)

Thế vô làm tiếp nhé

20 tháng 5 2017

làm hết ra lun chớ :(

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

28 tháng 9 2018

\(\hept{\begin{cases}\frac{3x+2}{x+3}+\frac{2y-5}{y-1}=5\left(1\right)\\\frac{3x+5}{x+3}+\frac{2y-4}{y-1}=4\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow y=-\frac{3x+2}{7}\)

Thê vào (2) rồi rut gọn ta được

\(3x+11=0\)

\(\Leftrightarrow x=-\frac{11}{3}\)

\(\Rightarrow y=\frac{9}{7}\)

5 tháng 1 2017

Đặt: \(\hept{\begin{cases}\frac{1}{x}=a\\\frac{1}{y}=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}a=\frac{3b}{2}\\a+b=\frac{1}{24}\end{cases}}\)

Rồi giải tiếp đi b

5 tháng 1 2017

cảm ơn bạn

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)