K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Đề thi vào 10  tỉnh hưng yên năm 2013 thì phải

7 tháng 12 2016

từ pt(1) ta có được (x - 2y)(x - y - 2)=0
với  x=2y thì thay vào ta được ( 2y^2 + y - 2)(4y^2 - 2y - 5)=0
với x - y =2 thì ta có (x^2 - 5)^2 = 9
phần còn lại tự làm vậy
 

6 tháng 12 2016

mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối

\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường

\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong

\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)

\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)

\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)

\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)

\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)

6 tháng 12 2016

\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)

Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)

Thế x = 2y vào (2) ta được

\(\left(4y^2-5\right)^2=4y-2y+5\)

\(\Leftrightarrow16y^4-40y^2-2y+20=0\)

\(\Leftrightarrow8y^4-20y^2-y+10=0\)

\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)

\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)

Tới đây thì đơn giản rồi. Cái còn lại làm tương tự

16 tháng 11 2016

\(\hept{\begin{cases}x^2+y^2=2\left(1\right)\\xy=1\left(2\right)\end{cases}}\)

Ta thấy x = 0, y = 0 không phải là nghiệm của hệ pt

Từ pt (2) => \(x=\frac{1}{y}\)thế vào pt (1) được

\(\frac{1}{y^2}+y^2=2\Leftrightarrow y^4-2y^2+1=0\)

\(\Leftrightarrow y^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy nghiệm của hệ là (x, y) = (1, 1; - 1, - 1)

16 tháng 11 2016

Cách khác :Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)  hệ thành:

\(\hept{\begin{cases}S^2-P=2\\P=1\end{cases}}\)\(\Leftrightarrow S^2=3\Leftrightarrow S=\sqrt{3}\)

Như vậy ta có hệ ban đầu là \(\hept{\begin{cases}x+y=\sqrt{3}\\xy=1\end{cases}}\)

r` tới đây thay vào 

12 tháng 4 2019

Xét phương trình đầu: \(x^2-\left(3y+2\right)x+2y^2+4y=0\)(1)

Xem x là ẩn và y là tham số:

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

Phương trình (1) có 2 nghiệm 

\(x_1=\frac{\left(3y+2\right)-\left(y-2\right)}{2}=y+2\)

\(x_2=\frac{3y+2+\left(y-2\right)}{2}=2y\)

+) Với x =y+2 <=> y=x-2Thế vào phương trình (2) Ta có:

\(\left(x^2-5\right)^2=9\Leftrightarrow\orbr{\begin{cases}x^2-5=-3\\x^2-5=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=2\\x^2=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm2\sqrt{2}\end{cases}}\)

thế vào tìm y

+) Với x=2y thế vào ta có: \(\left(x^2-5\right)^2=x+5\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^4-9x^2+\frac{81}{4}\right)-\left(x^2+x+\frac{1}{4}\right)=0\Leftrightarrow\left(x^2-\frac{9}{4}\right)^2-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

Em làm tiếp nhé

31 tháng 12 2017

2)trừ từng vế của 2 pt, ta có 

\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )

đến đây thì dễ rồi 

^_^

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)

24 tháng 2 2019

Lấy \(pt\left(1\right)-3.pt\left(2\right)\)được

\(11y^2+11y=22\)

\(\Leftrightarrow y^2+y-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

Thế vô 1 trong 2 pt đầu sẽ tìm đc x