Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
góc DAE= 1/2 góc BAC ( AD là tia phân giác góc BAC)
goc FEC=1/2 góc DEC (EF là tia phân giác góc DEC)
góc BAC= góc DEC (2 góc đồng vị và AB//DE)
-> goc DAE=góc FEC
mà góc DAE và góc FEC nằm ở vị trí đồng vị
nên AD//EF
ta có
góc DAE =1/2 góc BAC (AD là tia phân giác góc BAC)
góc EAK=1/2 góc EAz ( AK là tia phân giác góc zAC)
-> góc DAE+ góc EAK= 1/2 ( góc BAC+ góc EAz)
mà góc BAC + góc EAz=180 ( 2 góc kề bù)
nên goc DAE+ góc EAK=1/2.180=90
-> goc DAK =90
-> DA vuông góc AK
lại có EK vuông góc At tai K (gt)
do dó AD//EK
ta có
AD//EK (cmt)
AD//EF(cmt)
-> EK trùng EF ( tiên đề Ơ clit)
-> E,K,F thẳng hàng
Ta có: \(Ax//CD\)
\(\Rightarrow\widehat{CAx}=\widehat{ACD}\) (T/chất góc so le trong)
Mà: \(\widehat{BAx}=\widehat{CAx}\)
\(\Rightarrow\widehat{BAx}=\widehat{ACD}\) (đồng vị)
\(\Rightarrow\widehat{ADC}=\widehat{ACD}\)
Áp dụng tc góc ngoài: \(\widehat{yAC}=\widehat{B}+\widehat{C}=2\widehat{C}\)
Vì Ax//BC nên \(\widehat{xAC}=\widehat{C}\) (so le trong)
Do đó \(2\widehat{xAC}=\widehat{yAC}\)
Vậy Ax là p/g CAy
a) Vì ax là tia phân giác của góc bac nên bax=xac(1)
Vì ax//cd => xac và dca là hai góc so le trong=>xac=acd (2)
Vì bax và adc là hai góc đồng vị =>bax=adc(3)
Từ (1), (2) và (3) => xab=adc=acd (đpcm)
Xin lỗi vì chỉ mới làm đc câu a nhé =))