Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 2014x2015
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 2014x2015x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 2014x2015x(2016-2013)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 2014x2015x2016 - 2014x2015x2013.
A x 3 = 2014x2015x2016
A = 2014x2015x2016 : 3
A = 2727117120
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{14.15}\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{14.15}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{14}-\frac{1}{15}\right)\)
\(=3.\left(1-\frac{1}{15}\right)\)
\(=3.\frac{14}{15}\)
\(=\frac{14}{5}\)
\(1.2+2.3+3.4+4.5+...+9.10\)
Đặt A = \(1.2+2.3+3.4+4.5+...+9.10\)
\(3.A\) = \(1.2.3+2.3.3+3.4.3+4.5.3+...+9.10.3\)
=> \(3.A\) = \(1.2.3+2.3.4+3.4.5+4.5.6+...+9.10.11\)
Ta có: \(3.A=9.10.11\)
=>: \(A=\frac{9.10.11}{3}=330\)
=> A = 330
Đặt A = 1x2+2x3+3x4+...+25x26+26x27
3A = 1 x 2 x 3 - 1 x 2 x 3 + 2 x 3 x 4 -2 x 3 x 4 + ..... + 26 x 27 x 28
3A = 26 x 27 x 28
A= \(\text{ }\frac{\text{26 x 27 x 28}}{3}=6552\)
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)
A = 1 - \(\dfrac{1}{2022}\)
A = \(\dfrac{2021}{2022}\)
A=1*2+2*3+...+2014*2015
3A=1*2*3+2*3*(4-1)+...+2014*2015*(2016-2013)
3A=1*2*3+2*3*4-1*2*3+...+2014*2015*2016-2013*2014*2015
3A=2014*2015*2016
A=2014*2015*2016/3
A=2727117120