K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

Ta có: \(AB^2+HC^2=\left(AA'^2+A'B^2\right)+\left(A'H^2+A'C^2\right)\)

\(=\left(AA'^2+A'C^2\right)+\left(A'B^2+A'H^2\right)=AC^2+HB^2\)

Lại có: \(BC^2+HA^2=\left(BB'^2+B'C^2\right)+\left(B'H^2+B'A^2\right)\)

\(=\left(BB'^2+B'A^2\right)+\left(B'C^2+B'H^2\right)=AB^2+HC^2\)

\(\Rightarrow AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

Bài 3: 

a: Gọi OK là khoảng cách từ O đến AB

Suy ra: K là trung điểm của AB

hay \(AK=BK=\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔOKA vuông tại K, ta được:

\(OA^2=OK^2+KA^2\)

hay OK=3(cm)

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ

16 tháng 7 2021
ext-9bosssssssssssssssss
NV
21 tháng 7 2021

Tứ giác ACBD nội tiếp \(\Rightarrow\widehat{ADC}=\widehat{ABC}\) (cùng chắn AC) (1)

Lại có \(\widehat{ADC}+\widehat{DEH}=90^0\) (tam giác DEH vuông tại H theo gt) (2)

Gọi M là trung điểm BC, nối EM 

Trong tam giác vuông BCE, EM là trung tuyến ứng với cạnh huyền

\(\Rightarrow EM=\dfrac{1}{2}BC=BM\Rightarrow\Delta BEM\) cân tại M

\(\Rightarrow\widehat{ABC}=\widehat{MEB}\)  (3)

\(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\widehat{DEH}+\widehat{MEB}=90^0\)

\(\Rightarrow\widehat{DEH}+\widehat{MEB}+\widehat{DEB}=90^0+90^0=180^0\)

\(\Rightarrow M;E;H\) thẳng hàng hay HE đi qua trung điểm M của BC

NV
21 tháng 7 2021

undefined