K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

3 so moi thoi

17 tháng 12 2017

123^3000 đồng dư với 00001 mod 10^5
123^4 du 86641
123^8 du 62881
123^16 du 20161
123^32 du 65921
123^ 64 du 78241
=> 123^72 = 123^64 .123^8 =62881.78241 du 72321 (mod 10^5)
vậy 123^3072 có 5 chu số tận cùng là 72321

21 tháng 6 2019

\(5^6\equiv1\left(mod8\right)\)

\(353\equiv5\left(mod6\right)\Rightarrow353^{81}\equiv5^{81}\equiv5\left(mod6\right)\)

Đặt: \(358^{81}=6t+5\)

=> \(5^{353^{81}}\equiv5^{6t+5}\equiv5^5\equiv5\left(mod8\right)\)

=>\(5^{353^{81}}-5-15.8\equiv0\left(mod8\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod8\right)\)

mà : \(5^{353^{81}}\equiv0\left(mod125\right)\Rightarrow5^{353^{81}}-125\equiv0\left(mod125\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod1000\right)\)

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

2 tháng 9 2018

bạn ra đề khó quá

26 tháng 5 2016
Mình đã có cách giải, mong các bạn kiểm chứng giúp! Bất biến ở đây là dù có thay đổi số đã cho như thế nào thì số lúc sau luôn là bội của 7. Thật vậy, giả sử 7^1998 = (A49) ̅ thì A x 100 + 49 chia hết cho 7. Do đó A là bội của 7. Lại có (A4) ̅ + 45 = ((A + 4)9) ̅ = A x 10 + 49 Là bội của 7. Gọi (Bb) ̅ = A x 10 + 49. Vì thế (Bb) ̅ là bội của 7 và ta cần chứng minh rằng B + 5b là bội của 7. Theo như ta lập luận (Bb) ̅ là bội của 7 suy ra B x 10 + b là bội của 7 và vì thế B x 20 + 2b là bội của 7 B + 5b Cộng hai đẳng thức trên ta được B x 21 + 7b là bội của 7. Do đó B + 5b chia hết cho 7, điều phải chứng minh. Kết luận, sau cùng không thể tồn tại số 〖1998〗^7 trên bảng.