Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK
nên \(BD\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)
\(\sqrt{15+5\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{5}\sqrt{3+\sqrt{5}}-\sqrt{\dfrac{6-2\sqrt{5}}{2}}\)
\(=\sqrt{5}\sqrt{\dfrac{6+2\sqrt{5}}{2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2}}=\sqrt{5}\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{2}}-\dfrac{\left|\sqrt{5}-1\right|}{\sqrt{2}}\)
\(=\sqrt{5}.\dfrac{\left|\sqrt{5}+1\right|}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{5}.\dfrac{\sqrt{5}+1}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{\sqrt{2}}\)
\(=\dfrac{5+\sqrt{5}-\sqrt{5}+1}{\sqrt{2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)
bài 3 :
gọi số xe ban đầu của đội là x(xe)(x>2)
sau khi 2 xe điều động đi làm viêc khác thì số xe còn lại là x-2(xe)
theo dự định cả đôi xe phải vận chuyển 120 tấn hàng
nên mỗi xe ban đầu phải vận chuyển:120/x(tấn hàng)
mỗi xe lúc sau( khi có 2 xe bị điều động đi chỗ khác) phải chuyển
120/x-2(tấn hàng)
vì để hoàn thành công việc mỗi xe còn lại phải chở thêm 2 tấn hàng
=>pt:(120/x-2)-120/x=2
giải pt theo \(\Delta\) ta tìm được x1=12(thỏa mãn)
x2=-10(loại)
vậy lúc đầu trong đội có 12 xe
Câu 4:
a) Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OI là đường trung tuyến ứng với cạnh đáy AB(I là trung điểm của AB)
nên OI là đường cao ứng với cạnh AB(Định lí tam giác cân)
hay OI\(\perp\)AB
Ta có: \(\widehat{OIM}=90^0\)(OI\(\perp\)AB)
nên I nằm trên đường tròn đường kính OM(1)
Ta có: \(\widehat{OCM}=90^0\)(gt)
nên C nằm trên đường tròn đường kính OM(2)
Ta có: \(\widehat{ODM}=90^0\)(gt)
nên D nằm trên đường tròn đường kính OM(3)
Từ (1), (2) và (3) suy ra O,I,C,M,D cùng nằm trên một đường tròn(Đpcm)
\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}=\dfrac{5\sqrt{3}}{\sqrt{15}}+\dfrac{3\sqrt{5}}{\sqrt{15}}=\dfrac{5\sqrt{3}}{\sqrt{5}.\sqrt{3}}+\dfrac{3\sqrt{5}}{\sqrt{3}.\sqrt{5}}=\sqrt{5}+\sqrt{3}\)
Áp dụng BĐT Bunhiacopxki cho 2 bộ số (\(\sqrt{a+b}\),\(\sqrt{b+c}\),\(\sqrt{a+c}\)) và (1,1,1) có: (1.\(\sqrt{a+b}\)+1.\(\sqrt{b+c}\)+1.\(\sqrt{a+c}\))2 ≤ (a + b + b + c + c + a)(12 + 12 + 12)
=> S2 ≤ 2.3 = 6 ⇔ S ≤ \(\sqrt{6}\)
Dấu "=" xảy ra ⇔ \(\sqrt{a+b}\) = \(\sqrt{b+c}\) = \(\sqrt{a+c}\) ⇔ a +b = b + c = c + a
⇔ 1 - c = 1 - a = 1 - b
⇔ a = b = c = \(\dfrac{1}{3}\)
Vậy maxS = \(\sqrt{6}\) ⇔ a = b = c = \(\dfrac{1}{3}\)