Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(y=sinx\left(y\in\left[-1;1\right]\right)\).
\(cos\left(sinx\right)=1\)
\(\Leftrightarrow cosy=1\)
\(\Leftrightarrow y=k2\pi\)
Vì \(y\in\left[-1;1\right]\Rightarrow-1\le k2\pi\le1\Leftrightarrow-\dfrac{1}{2\pi}\le k\le\dfrac{1}{2\pi}\)
\(\Rightarrow k=0\)
\(\Rightarrow y=0\)
\(\Leftrightarrow sinx=0\)
\(\Leftrightarrow x=k\pi\)
\(\Leftrightarrow k\in\left\{0;1;2\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pi\\x=2\pi\end{matrix}\right.\)
\(\Rightarrow S=3\pi\)
pt<=>\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{2\Pi}{3}\right)=sin\left(\dfrac{7\Pi}{4}-x\right)\\sin\left(3x+\dfrac{2\Pi}{3}\right)=-sin\left(\dfrac{7\Pi}{4}-x\right)=sin\left(x-\dfrac{7\Pi}{4}\right)\end{matrix}\right.\)
tới đây tự giải đi nhé!!!!
Kết quả:\(\left\{{}\begin{matrix}x=\dfrac{13\Pi}{48}+\dfrac{k\Pi}{2}\\x=\dfrac{-17\Pi}{24}+k\Pi\\x=\dfrac{-29\Pi}{24}+k\Pi\\x=\dfrac{25\Pi}{48}+\dfrac{k\Pi}{2}\end{matrix}\right.\)