K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

3x + 4y =12 => 4y= 12 - 3x   (1)

Ta có mx + 2y  = 5      <=> 2mx +4y =10

=> 4y = 10 - 2mx                  (2)

Từ (1) và (2) suy ra : 10-2mx = 12 - 3x

=> -2mx + 3x = 12 -10

=> x(3-2m) = 2

=> x=2/(3-2m)

Để hệ vô ngiệm x không xác định => 3-2m = 0

=> m= 1,5

Vậy m =1,5

26 tháng 3 2019

Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)

a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)

b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)

Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)

a. Thay m = 1 vào hệ ta dc: \(\hept{\begin{cases}x-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\) <=> \(\hept{\begin{cases}x-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}3x-3y=3\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}x-y=1\\-5y=-45\end{cases}}\)<=> \(\hept{\begin{cases}x=y+1=9+1=10\\y=9\end{cases}}\)

Vậy no cua hpt khi m = 1 là: (10;9)

b. Xét hệ: \(\hept{\begin{cases}mx-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}2mx-2y=2\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}\left(2m+3\right)x=50\left(1\right)\\3x+2y=48\end{cases}}\)

Hệ pt vô nghiệm <=> (1) vô nghiệm 2m + 3 = 0 <=> m = \(-\frac{3}{2}\)

Vậy khi m = -3/2 thì hệ pt vô nghiệm

NV
5 tháng 2 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\3x-2y=11-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\5x=5m+15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=2m-1\end{matrix}\right.\)

b. \(P=\left(m+3\right)^2-\left(2m-1\right)^2\)

\(P=-3m^2+10m+10=-3\left(m-\dfrac{5}{3}\right)^2+\dfrac{55}{3}\le\dfrac{55}{3}\)

Dấu "=" xảy ra khi \(m=\dfrac{5}{3}\)

17 tháng 12 2018

cho hệ phương trình \(\hept{\begin{cases}mx+y=10\\2x-3y=6\end{cases}}\)

a,Khi  m= 1,ta có hệ phương trình \(\hept{\begin{cases}x+y=10\\2x-3y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{36}{5}\\y=\frac{14}{5}\end{cases}}\)

b, hệ phương trình vô nghiệm khi\(\frac{m}{2}=\frac{1}{-3}\ne\frac{10}{6}\Leftrightarrow m=-\frac{2}{3}\)

NV
5 tháng 2 2021

\(\left\{{}\begin{matrix}x+my=3\\m^2x+my=2m^2+m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\\left(m^2-1\right)x=2m^2+m-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\x=\dfrac{2m+3}{m+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m+3}{m+1}\\y=\dfrac{1}{m+1}\end{matrix}\right.\)

\(P=\left(\dfrac{2m+3}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}=\left(2+\dfrac{1}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}\)

\(=4+\dfrac{4}{m+1}+\dfrac{4}{\left(m+1\right)^2}=\left(\dfrac{2}{m+1}+1\right)^2+3\ge3\)

\(P_{min}=3\) khi \(m=-3\)

20 tháng 7 2019

mấy bài này dễ mà bạn