Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
Mình bận 1 xíu, nhưng nếu học giới hạn thì bạn cần nắm rõ các khái niệm và các dạng vô định cũng như không phải vô định đã
Giới hạn này không phải là 1 giới hạn vô định (mẫu số xác định và hữu hạn), khi gặp giới hạn kiểu này thì chỉ có 1 cách: thay số tính trực tiếp như lớp 1 là được:
\(\lim\limits_{x\rightarrow\dfrac{\pi}{2}}\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{x}=\dfrac{sin\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}\right)}{\dfrac{\pi}{2}}=\dfrac{\sqrt{2}}{\pi}\)
\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)
\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)
\(\Leftrightarrow q^3+2q^2+3q+6=0\)
\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)
\(\Leftrightarrow q=-\text{}2\)
\(\Rightarrow u_1=\dfrac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)
theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!
\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)
\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)
\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)
Do \(\lim\left(n\right)=+\infty\)
\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)
\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)
7.
Hàm có đúng 1 điểm gián đoạn khi và chỉ khi \(x^2-2\left(m+2\right)x+4=0\) có đúng 1 nghiệm
\(\Rightarrow\Delta'=\left(m+2\right)^2-4=0\)
\(\Leftrightarrow m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=0\end{matrix}\right.\)
\(-4+0=-4\)
8.
Hàm gián đoạn khi \(x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Nên hàm đồng biến trên các khoảng \(\left(-\infty;-3\right);\left(-3;1\right);\left(1;+\infty\right)\) và các tập con của chúng
A đúng
20: \(\lim\limits_{x\rightarrow+\infty}x^3+2x-1=\lim\limits_{x\rightarrow+\infty}\left[x^3\left(1+\dfrac{2}{x^2}-\dfrac{1}{x^3}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow+\infty}x^3=+\infty\\\lim\limits_{x\rightarrow+\infty}1+\dfrac{2}{x^2}-\dfrac{1}{x^3}=1\end{matrix}\right.\)
Câu5:
Gọi 4 chữ số đc lập lần lượt là a,b,c,d các số chia hết cho 2 thì d phải thuộc 0;2;6
TH1: d=0 -> d có 1 cách chọn, a có 6 cách chọn, b có 5 cách chọn , c có 4 cách chọn a×b×c×d= 6×5×4×1=120
TH2 : d là 2 hoặc 6 -> d có 2 cách chọn , a có 5 cách chọn( trừ số 0) , b có 5 cách chọn, c có 4 cách chọn. a×b×c×d= 5×5×4×2=200
Th1+ TH2 = 120+200=320
Đáp án c
Câu 6 : có 4! Cách lập
4! = 24
Đáp án d
Câu 7 :
Theo nhị thức Newton thì chỉ cần nhìn vào 2 số đầu và cuối
(a+b)⁵ thì a=⁵√243x⁵ = 3x b =⁵√-1=-1 => (3x-1)⁵ đáp án D
Câu 8: chia làm 2 trường hợp 2 nữa 1 nam hoặc 2 nam 1 nữ.
Đáp án C
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) (A đúng)
\(AC\perp BD\) theo tính chất của hình vuông (2 đường chéo vuông góc) (B đúng)
\(SA\perp CD\) theo cmt (C đúng)
Do đó D sai
a, \(u_n=u_1.q^{n-1}\)
\(\Leftrightarrow192=u_1.2^n\)
\(\Leftrightarrow u_1=\dfrac{192}{2^n}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\)
\(\Leftrightarrow189=\dfrac{\dfrac{192}{2^n}\left(1-2^n\right)}{1-2}\)
\(\Leftrightarrow189=192-\dfrac{192}{2^n}\)
\(\Leftrightarrow\dfrac{192}{2^n}=3\)
\(\Leftrightarrow2^n=2^6\)
\(\Rightarrow n=6\)