K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 9 2021

a. ĐKXĐ \(x\ge2\)

\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)

\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\) Pt vô nghiệm 

10 tháng 9 2021

\(a.\sqrt{x+3}=5-\sqrt{x-2}\)

\(\sqrt{x+3}+\sqrt{x-2}=5\)

\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)

\(x+3+x-2=25\)

\(2x+1=25\)

\(x=12\)

\(b.\sqrt{x^2-x-1}=1-x\)

\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)

\(x^2-x-1=1-2x+x^2\)

\(x^2-x-1-1+2x-x^2=0\)

\(x-2=0\)

\(x=2\)

2 tháng 4 2018

1/ Đặt \(\sqrt{x^2+x+1}=a>0\)

\(\Rightarrow a^2+2-3a=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)

2 tháng 4 2018

2/ \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+5}=\sqrt{x}+\sqrt{x-3}\)

\(\Leftrightarrow8-x=2\sqrt{x\left(x-3\right)}\)

\(\Leftrightarrow-3x^2-4x+64=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{16}{3}\\x=4\end{cases}}\)

PS: Điều kiện b tự làm rồi tự chọn nghiệm nhé

28 tháng 9 2021

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

15 tháng 9 2021

\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)

\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)

\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️