Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: ...
c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow5x+25=0\)
\(\Leftrightarrow x=-5\)( ko t/m )
d) tương tự, ngại tính lắm
e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)
a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14
a) ĐKXĐ: \(x\ne-1;x\ne2\)
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
⇔\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(x-2-5x-5+15=0\)
⇔\(-4x+8=0\)
⇔\(-4x=-8\)
⇔\(x=\frac{-8}{-4}=2\)(loại)
Vậy: x không có giá trị
b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)
Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
⇔\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)
⇔\(x-3-10x+15=0\)
⇔\(-9x+12=0\)
⇔\(-9x=-12\)
⇔\(x=\frac{-12}{-9}=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
c) ĐKXĐ:\(x\ne3;x\ne1\)
Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)
⇔\(\frac{6}{x-1}-\frac{8}{x-3}=0\)
⇔\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)
⇔\(6\left(x-3\right)-8\left(x-1\right)=0\)
⇔6x-18-8x+8=0
⇔-2x-10=0
⇔-2(x+5)=0
Vì 2≠0 nên x+5=0
hay x=-5
Vậy: x=-5
a)\(pt\Leftrightarrow-\frac{x}{2x^2-5}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=\frac{x}{2x^2+10x}-\frac{5}{2x^2+10x}\)
=>\(-\frac{x}{2x^2+10x}+\frac{5}{2x^2+10x}-\frac{x}{2x^2-50}-\frac{25}{2x^2-50}+\frac{x}{x^2-5}+\frac{5}{x^2-5}=0\)
\(\Leftrightarrow-\frac{5\left(x^2+8x-5\right)}{2\left(x-5\right)x\left(x^2-5\right)}=0\)
\(\Rightarrow\frac{1}{x-5}=0\Leftrightarrow\frac{1}{x}=0\Rightarrow\frac{1}{x^2-5}=0\)
=>x2+8x-5=0
=>82-(-4(1.5))=84
=>x1=(-8)+8:2=\(\sqrt{21}-4\)
=>x2=(-8)+8:2=\(-\sqrt{21}-4\)
=>x=±\(\sqrt{21}-4\)
b)\(\Leftrightarrow-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=\frac{16}{x^2-1}\)
\(\Rightarrow-\frac{16}{x^2-1}-\frac{x}{x+1}+\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}=0\)
\(\Rightarrow\frac{4\left(x-4\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=4
c)\(\Leftrightarrow-\frac{x^2}{x+1}-\frac{x}{x+1}+\frac{2}{x+1}+x+2=\frac{x}{x+1}-\frac{1}{x+1}+\frac{x}{x-1}+\frac{1}{x-1}\)
\(\Rightarrow-\frac{x^2}{x+1}-\frac{2x}{x+1}+\frac{3}{x+1}-\frac{x}{x-1}+x-\frac{1}{x-1}+2=0\)
\(\Rightarrow\frac{2\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}=0\Leftrightarrow\frac{1}{x-1}=0\Rightarrow\frac{1}{x+1}=0\)
=>x=3