Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).
Từ đó \(x^2-2x-1\vdots x^2+2x-1\)
\(\Leftrightarrow4x⋮x^2+2x-1\) (1)
\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)
\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)
Từ (1), (2) suy ra \(8⋮x^2+2x-1\).
Đến đây bạn xét TH.
\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)
\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)
\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)
\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)
\(=0+0+0+0-15\)
\(=-15\)
\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)
\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)
\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)
\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)
\(=0+0+0-18\)
\(=-18\)
\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)
\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)
\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)
\(=x^3-8y^3-3+8y^3\)
\(=x^3-3\)
Ta có : \(x^3-y^3-2y^2-3y-1=0\)
\(\Leftrightarrow x^3-\left(y^3+2y^2+3y+1\right)=0\)
\(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Lại có :
\(y^3+2y^2+3y+1=\left(y^3-3y^2+3y-1\right)+5y^2+2=\left(y-1\right)^3+5y^2+2\)
Do \(5y^2\ge0\forall y\Rightarrow\left(y-1\right)^3+5y^2+2\ge\left(y-1\right)^3+2>\left(y-1\right)^3\left(1\right)\)\(y^3+2y^2+3y+1=\left(y^3+3y^2+3y+1\right)-y^2=\left(y+1\right)^3-y^2\)
Do \(y^2\ge0\forall y\Rightarrow\left(y+1\right)^3-y^2\le\left(y+1\right)^3\forall y\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(y-1\right)^3< x^3\le\left(y+1\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}x^3=\left(y+1\right)^3\left(3\right)\\x^3=y^3\left(4\right)\end{matrix}\right.\)
Từ ( 3 )
\(\Rightarrow x^3=y^3+3y^2+3y+1\)
\(\Rightarrow y^3+2y^2+3y+1=y^3+3y^2+3y+1\)
\(\Rightarrow y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(y+1\right)^3=1\)
\(\Rightarrow x^3=1\)
\(\Rightarrow x=1\)
Từ ( 4 )
\(\Rightarrow y^3+2y^2+3y+1=y^3\)
\(\Rightarrow2y^2+3y+1=0\)
\(\Rightarrow2y^2+2y+y+1=0\)
\(\Rightarrow2y\left(y+1\right)+y+1=0\)
\(\Rightarrow\left(2y+1\right)\left(y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y+1=0\\y+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-\dfrac{1}{2}\left(L;y\in Z\right)\\y=-1\end{matrix}\right.\)
\(\Rightarrow y^3=-1=x^3\)
\(\Rightarrow x=-1\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-1\right);\left(1,0\right)\right\}\)