Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
Dùng liên hợp.
pt <=> \(\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(1+\sqrt{3}\right)\)
\(-3\left(x-1\right)\left(x-\sqrt{3}\right)\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(+2\left(x-1\right)\left(x-\sqrt{2}\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+\sqrt{2}\right)=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left[\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)-\left(x-1\right)\left(\sqrt{2}+\sqrt{3}\right)\right]\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left[\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)-\left(x-\sqrt{2}\right)\left(1+\sqrt{3}\right)\right]\)
\(=3x-1\)
<=> \(\left(x-\sqrt{3}\right)\left(1+\sqrt{2}\right)\left(x+\sqrt{3}\right)\left(1-\sqrt{2}\right)\)
\(-2\left(x-1\right)\left(\sqrt{3}+\sqrt{2}\right)\left(x+1\right)\left(\sqrt{2}-\sqrt{3}\right)=3x-1\)
<=> \(3-x^2-2\left(1-x^2\right)=3x-1\)
<=> \(x^2-3x+2=0\) phương trình bậc 2.
Em làm tiếp nhé!
a) \(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
<=> \(\left(x+1\right)^2=\left[\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\right]^2\)
<=> \(x^2+2x+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2+1=2x+2+2\sqrt{2x+2+4\sqrt{x+1}}-2x\)
<=> \(x^2+1=2\sqrt{2x+2+4\sqrt{x+1}}+2\)
<=> \(x^2+1-2=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(x^2-1=2\sqrt{2x+2+4\sqrt{x+1}}\)
<=> \(\left(x^2-1\right)^2=\left(2\sqrt{2x+2+4\sqrt{x+1}}\right)^2\)
<=> \(x^4-2x^2+1=8x+8+16\sqrt{x+1}\)
<=> \(x^4-2x^2+1-8x=16\sqrt{x+1}+8\)
<=> \(x^4-2x^2-8x-7=16\sqrt{x+1}\)
<=> \(\left(x^4-2x^2-8x-7\right)^2=\left(16\sqrt{x+1}\right)^2\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x+49=256x+256\)
<=> \(x^8-4x^6-16x^5-10x^4+32x^3+92x^2+112x-144x-207=0\)
<=> \(\left(x+1\right)\left(x-2\right)\left(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\right)=0\)
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vì: \(x^6+2x^5+3x^4-4x^3-9x^2+2x+69\ne0\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)