K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)

\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)

\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)

\(\Leftrightarrow108-24x+12=324-27x+27\)

\(\Leftrightarrow3x=231\)

\(\Rightarrow x=77\)

c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)

\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)

\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)

\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)

28 tháng 5 2018

a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9

b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5

c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)

Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12


 

22 tháng 5 2021

\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)

\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)

\(< =>4x-12-4x+2=10x+10+5\)

\(< =>10x=-10-10-5=-25\)

\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)

22 tháng 5 2021

\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)

\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)

\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)

1) Ta có: \(5\left(x-2\right)=3x+10\)

\(\Leftrightarrow5x-10-3x-10=0\)

\(\Leftrightarrow2x-20=0\)

\(\Leftrightarrow2\left(x-10\right)=0\)

Vì 2>0

nên x-10=0

hay x=10

Vậy: x=10

2) Ta có: \(x^2\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow x^2\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)

Vậy: x∈{-2;2;5}

3) Ta có: \(\frac{3x+1}{4}+\frac{8x-21}{20}=\frac{3\left(x+2\right)}{5}-2\)

\(\Leftrightarrow\frac{5\left(3x+1\right)}{20}+\frac{8x-21}{20}-\frac{12\left(x+2\right)}{20}+\frac{40}{20}=0\)

\(\Leftrightarrow15x+5+8x-21-12\left(x+2\right)+40=0\)

\(\Leftrightarrow15x+5-8x-21-12x-24+40=0\)

\(\Leftrightarrow-5x=0\)

hay x=0

Vậy: x=0

4) ĐKXĐ: x≠5; x≠-5

Ta có: \(\frac{3}{4x-20}+\frac{7}{6x+30}=\frac{15}{2x^2-50}\)

\(\Leftrightarrow\frac{3}{4\left(x-5\right)}+\frac{7}{6\left(x+5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\frac{9\left(x+5\right)}{12\left(x-5\right)\left(x+5\right)}+\frac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}-\frac{180}{12\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow9x+45+14x-70-180=0\)

\(\Leftrightarrow23x-205=0\)

\(\Leftrightarrow23x=205\)

hay \(x=\frac{205}{23}\)(tm)

Vậy: \(x=\frac{205}{23}\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\) i,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này