K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 7 2019

a) 1,2x3 – x2 – 0,2x = 0

⇔ 0,2x.(6x2 – 5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải (1): 6x2 – 5x – 1 = 0

có a = 6; b = -5; c = -1

⇒ a + b + c = 0

⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.

Vậy phương trình ban đầu có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) 5x3 – x2 – 5x + 1 = 0

⇔ x2(5x – 1) – (5x – 1) = 0

⇔ (x2 – 1)(5x – 1) = 0

⇔ (x – 1)(x + 1)(5x – 1) = 0

Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 58 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

7 tháng 4 2017

a, \(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow12x^3-10x^2-2x=0\)
\(\Leftrightarrow6x^3-5x^2-x=0\)
\(\Leftrightarrow x\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x^2-5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{6};0;1\right\}\)

b, \(5x^3-x^2-5x+1=0\)
\(\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1;\dfrac{1}{5};1\right\}\)

\(a,1,2x^3-x^2-0,2x=0\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\1,2x^2-x-0,2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{-1}{6}\end{matrix}\right.\)

\(b,5x^3-x^2-5x+1=0\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\\x=-1\end{matrix}\right.\)

4 tháng 11 2019

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -1).

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

KL: Đồ thị hai hàm số trên cắt nhau tại điểm (2; -1). Vậy (2; -1) là nghiệm của hệ phương trình

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

15 tháng 11 2018

a )   x 2   –   5   =   0   ⇔   x 2   =   5   ⇔   x 1   =   √ 5 ;   x 2   =   - √ 5

Vậy phương trình có hai nghiệm  x 1   =   √ 5 ;   x 2   =   - √ 5

Cách khác:

x 2   –   5   =   0   ⇔   x 2   –   ( √ 5 ) 2   =   0

⇔ (x - √5)(x + √5) = 0

hoặc x - √5 = 0 ⇔ x = √5

hoặc x + √5 = 0 ⇔ x = -√5

b)

x 2   –   2 √ 11   x   +   11   =   0   ⇔   x 2   –   2 √ 11   x   +   ( √ 11 ) 2   =   0     ⇔   ( x   -   √ 11 ) 2   =   0

⇔ x - √11 = 0 ⇔ x = √11

Vậy phương trình có một nghiệm là x = √11

14 tháng 9 2019

4x4 + x2 – 5 = 0;

Đặt x2 = t (t ≥ 0). Phương trình trở thành:

4t2 + t - 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t1 = 1; t2 =(-5)/4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có: x2 = 1 ⇔ x = ±1

Vậy phương trình có 2 nghiệm x1 = 1; x2 = -1

21 tháng 4 2017

a) 3 x 2  – 7x + 2 = 0

Δ= 7 2  -4.3.2 = 49 - 24 = 25 > 0 ⇒ ∆ = 5

Phương trình có 2 nghiệm phân biệt:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tập nghiệm của phương trình là S = {2; 1/3}

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

9 tháng 7 2017

Đặt m =  x 2  .Điều kiện m ≥ 0

Ta có:  x 4  -8 x 2 – 9 =0 ⇔  m 2  -8m -9 =0

Phương trình m 2  - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0

suy ra:  m 1  = -1 (loại) ,  m 2  = -(-9)/1 =9

Ta có:  x 2  =9 ⇒ x= ± 3

Vậy phương trình đã cho có 2 nghiệm :  x 1  =3 ; x 2  =-3

17 tháng 5 2017

Đặt m =  x 2  – 2x

Ta có:  x 2 - 2 x 2  – 2 x 2  + 4x – 3 = 0

⇔  x 2 - 2 x 2  – 2( x 2  – 2x) – 3 = 0

⇔  m 2 – 2m – 3 = 0

Phương trình  m 2  – 2m – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  m 1  = -1,  m 2  = 3

Với m = -1 ta có:  x 2 – 2x = -1 ⇔  x 2  – 2x + 1 = 0

Phương trình  x 2  – 2x + 1 = 0 có hệ số a = 1, b = -2, c = 1 nên có dạng a + b + c = 0

Suy ra:  x 1 = x 2  = 1

Với m = 3 ta có:  x 2 – 2x = 3 ⇔  x 2 – 2x – 3 = 0

Phương trình  x 2  – 2x – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  x 1  = -1,  x 2 = 3

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 1,  x 2  = -1,  x 3  = 3