Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)\cdot x=2x\cdot\left(x+5\right)\)
\(\Leftrightarrow x\cdot\left(x-2\right)-2x\left(x+5\right)=0\)
\(\Leftrightarrow x\cdot\left[x-2-2\left(x+5\right)\right]=0\)
\(\Leftrightarrow x\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy: S={0;-8}
b) Ta có: \(\left(2x-5\right)\left(x+11\right)=\left(5-2x\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)-\left(5-2x\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\3x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};-4\right\}\)
c) Ta có: \(x^2+6x+9=4x^2\)
\(\Leftrightarrow\left(x+3\right)^2-\left(2x\right)^2=0\)
\(\Leftrightarrow\left(x+3-2x\right)\left(x+3+2x\right)=0\)
\(\Leftrightarrow\left(-x+3\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: S={3;-1}
d) Ta có: \(\left(x+2\right)\left(5-4x\right)=x^2+4x+4\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\-5x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{5}\right\}\)
1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)
\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)
\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)
=>-8x+8=0
hay x=1(nhận)
c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
\(a,x-5\left(x-2\right)=6x\\ \Leftrightarrow x-5x+10-6x=0\\ \Leftrightarrow-10x+10=0\\ \Leftrightarrow x=1\\ b,2^3+3x^2-32x=48\\ \Leftrightarrow3x^2-32x+8=48\\ \Leftrightarrow3x^2-32x-40=0\)
Nghiệm xấu lắm bn
\(c,\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\\ \Leftrightarrow c,\left(3x+1\right)\left[\left(2x-5\right)^2-\left(x-3\right)^2\right]\\ \Leftrightarrow\left(3x+1\right)\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x-2\right)\left(3x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(d,9x^2-1=\left(3x+1\right)\left(4x+1\right)\\ \Leftrightarrow\left(3x+1\right)\left(4x+1\right)-\left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(4x+1-3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
\(b,2x^3+3x^2-32x-48=0\\ \Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\\ \Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\\ \Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{3}{2}\\x=-4\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{2;\dfrac{5}{2}\right\}\)
\(c,\Leftrightarrow2x.\left(x+1\right)-x.\left(x-1\right)=\left(x-1\right)\left(x+1\right)\) ( ĐKXĐ: \(x\ne-1;x\ne1\) )
\(\Leftrightarrow2x^2+2x-x^2+x=x^2-1\\ \Leftrightarrow x^2-x^2+3x=-1\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\) ( nhận )
Vậy phương trình có tập nghiệm S = \(\left\{-\dfrac{1}{3}\right\}\)
c) \(\dfrac{x}{x-2}+\dfrac{x}{x+2}=\dfrac{4x}{x^2-4}.ĐKXĐ:x\ne2;-2\)
<=>\(\dfrac{x\left(x+2\right)}{x^2-4}+\dfrac{x\left(x-2\right)}{x^2-4}=\dfrac{4x}{x^2-4}\)
<=>x2+2x+x2-2x=4x
<=>2x2-4x=0
<=>2x(x-2)=0
<=>\(\left[{}\begin{matrix}2x=0< =>x=0\\x-2=0< =>x=2\left(loại\right)\end{matrix}\right.\)
Vậy pt trên có nghiệm là S={0}
d) 11x-9=5x+3
<=>11x-5x=9+3
<=>6x=12
<=>x=2
Vậy pt trên có nghiệm là S={2}
e) (2x+3)(3x-4) =0
<=> \(\left[{}\begin{matrix}2x+3=0< =>x=\dfrac{-3}{2}\\3x-4=0< =>x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={\(\dfrac{-3}{2};\dfrac{4}{3}\)}
a) 5x+9 =2x
<=> 5x-2x=9
<=> 3x=9
<=> x=3
Vậy pt trên có nghiệm là S={3}
b) (x+1)(4x-3)=(2x+5)(x+1)
<=> (x+1)(4x-3)-(2x+5)(x+1)=0
<=>(x+1)(2x-8)=0
<=>\(\left[{}\begin{matrix}x+1=0< =>x=-1\\2x-8=0< =>2x=8< =>x=4\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={-1;4}
a) \(x^2-4x+4=25\\ \Rightarrow\left(x-2\right)^2=25\\ \Rightarrow\left[{}\begin{matrix}x-2=-5\\x-2=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
b) \(\left(5-2x\right)^2-16=0\\ \Rightarrow\left(5-2x\right)^2=16\\ \Rightarrow\left[{}\begin{matrix}5-2x=-4\\5-2x=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4,5\\0,5\end{matrix}\right.\)
c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\\ \Rightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x+1\right)^2=15\\ \Rightarrow9\left(x+1\right)^2=15\\ \Rightarrow\left(x+1\right)^2=\dfrac{5}{3}\\ \Rightarrow\left[{}\begin{matrix}x+1=-\sqrt{\dfrac{5}{3}}\\x+1=\sqrt{\dfrac{5}{3}}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3+\sqrt{15}}{3}\\x=\dfrac{-3+\sqrt{15}}{3}\end{matrix}\right.\)
a)\(\Leftrightarrow\)\(x^2-4x-21=0\)
\(\Leftrightarrow\)\(x^2-7x+3x-21=0\)
\(\Leftrightarrow\)\(x(x-7)+3(x-7)=0\)
\(\Leftrightarrow\)\((x-7)(x+3)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=7\\ x=-3 \end{array} \right.\)
b)\(\Leftrightarrow\)\((5-2x)^2-4^2=0\)
\(\Leftrightarrow\)\((5-2x-4)(5-2x+4)=0\)
\(\Leftrightarrow\)\((-2x+1)(-2x+9)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=\dfrac{1}{2}\\ x=\dfrac{9}{2} \end{array} \right.\)
a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)
=>x(2x+10-x+2)=0
=>x(x+12)=0
=>x=0 hoặc x=-12
b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
=>(2x-5)(3x+12)=0
=>x=5/2 hoặc x=-4
c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)
=>(x-3)(3x+3)=0
=>x=3 hoặc x=-1
d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
=>(x+2)(-5x+3)=0
=>x=-2 hoặc x=3/5
\(a,\left(x-2\right)x=2x\left(x+5\right)\)
\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)
\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)