K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

15 tháng 1 2019

\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)

Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2

11 tháng 8 2021

1/ \(2\left(x-5\right)=\left(-x-5\right)\)

\(\Leftrightarrow2x-10=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

==========

2/ \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy: \(S=\left\{7\right\}\)

==========

3/ \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1=x-19\)

\(\Leftrightarrow0x=0\)

Vậy: \(S=\left\{x|x\text{ ∈ }R\right\}\) 

===========

4/ \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2=10-15x\)

\(\Leftrightarrow14x=1\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy: \(S=\left\{\dfrac{1}{14}\right\}\)

==========

5/ \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x=7x+1\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\)

Vậy: \(S=\left\{-3\right\}\)

[---]

Chúc bạn học tốt.

11 tháng 8 2021

1. \(2\left(x-5\right)=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy \(S=\left\{\dfrac{5}{3}\right\}\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow x=7\)

Vậy \(S=\left\{7\right\}\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1-x+19=0\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\in R\right\}\)

4. \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2-10+15x=0\)

\(\Leftrightarrow14x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy \(S=\left\{\dfrac{1}{14}\right\}\)

4. \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x-7x-1=0\)

\(\Leftrightarrow-2x-6=0\)

\(\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

5 tháng 2 2022

e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)

\(\Leftrightarrow x=-1\left(TM\right)\)

b)

ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)

Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)

Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Leftrightarrow2x^2-14=2x^2+x-10\)

\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(nhận)

Vậy: S={-4}

a) ĐKXĐ: \(x\ne1\)

Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-2x=-2+9\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\dfrac{7}{19}\)

Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

3 tháng 3 2020

Bài 1:

1. \(x-8=3-2\left(x+4\right)\)

\(x-8=3-2x-8\)

\(3x=3\Rightarrow x=1\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(2x+6-3x+3=2\)

\(-x+9=2\Rightarrow x=7\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(4x-20-3x+1=x-19\)

\(0x=0\Rightarrow x=0\)

4. \(7-\left(x-2\right)=5\left(2x-3\right)\)

\(7-x+2=10x-15\)

\(-11x=-24\Rightarrow x=\frac{24}{11}\)

5. \(32-4\left(0,5y-5\right)=3y+2\)

\(32-2y+20=3y+2\)

\(-5y=-50\Rightarrow y=10\)

6. \(3\left(x-1\right)-x=2x-3\)

\(3x-3-x=2x-3\)

\(0x=0\Rightarrow x=0\)

Bài 2:

1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)

\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)

\(\frac{10-5x-9+6x}{15}=0\)

\(x+1=0\Rightarrow x=-1\)

2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)

\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)

\(\frac{15-20x-4x-8}{20}=0\)

\(7-24x=0\)

\(24x=7\Rightarrow x=\frac{7}{24}\)

4 tháng 3 2020

Bạn giúp mình nốt nha ☺