Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét x = - 2, thay vào pt ta dc: -1.0 = 4.0 (Hợp lí)
Vậy x = -2 là 1 nghiệm của pt
Xét x \(\ne\)- 2, ta có: x + 1 = 2 - x
<=> 2x = 1 <=> x = 1/2
Vậy S = {1/2; -2}
2. a. \(2\left(m+\frac{3}{5}\right)-\left(m+\frac{13}{5}\right)=5\)
<=> \(2m+\frac{6}{5}-m-\frac{13}{5}=5\)
<=> m = \(\frac{32}{5}\)
b. \(2\left(3m+1\right)+\frac{1}{4}-\frac{2\left(3m-1\right)}{5}+3m+\frac{1}{5}=5\)
<=> \(6m+2+\frac{1}{4}-\frac{6m-2}{5}+3m+\frac{1}{5}=5\)
<=> \(6m-\frac{6m-2}{5}+3m=5-2-\frac{1}{4}-\frac{1}{5}\)
<=> \(9m-\frac{6m-2}{5}=\frac{51}{20}\)
<=> \(\frac{45m-6m+2}{5}=\frac{51}{20}\)
<=> \(20\left(39m+2\right)=51.5\)
<=> 780m + 40 = 255
<=> 780m = 215
<=> m = \(\frac{43}{156}\)
a) Bất phương trình đã cho tương đương với hệ sau:
Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )
b) Tương tự câu a), tập nghiệm là (1/10; 5)
c) Đặt t = log 2 x , ta có bất phương trình 2 t 3 + 5 t 2 + t – 2 ≥ 0 hay (t + 2)(2 t 2 + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2
Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2
Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )
d) Bất phương trình đã cho tương đương với hệ:
Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )
b) |x + 4| = 2x - 5 ⇔ x + 4 = 2x - 5 khi x + 4 ≥ 0 ⇔ x ≥ -4
⇔ x = 9 ( thoả mãn điều kiện x ≥ -4)
|x + 4| = 2x - 5 ⇔ -x - 4 = 2x - 5 khi x + 4 < 0 ⇔ x < -4
⇔ 3x = 1
⇔ x = (không thoả mãn điều kiện x < -4)
Vậy phương trình có nghiệm x = 9
d) |x - 4| + 3x = 5
|x - 4| + 3x = 5 ⇔ x - 4 + 3x = 5 khi x ≥ 4
⇔ 4x = 9
⇔ x = (không thoả mãn điều kiện x ≥ 4)
|x - 4| + 3x = 5 ⇔ -x + 4 + 3x = 5 khi x < 4
⇔ 2x = 1
⇔ x =
a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)
\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)
\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)
\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)
\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)
\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)
\(\Rightarrow x=1\)
a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :
\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)
Ta có :
\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x
Do đó \(f\left(x\right)\) đồng biến trên R
Mặt khác
f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình
b) Phương trình tương đương với
\(2^x\left(2-2^x\right)=x-1\)
Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình
- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)< \(x-1\)
phương trình vô nghiệm
- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)> \(x-1\)
phương trình đã cho có 1 nghiệm duy nhất là x=1