K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

20 tháng 2 2020

\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)

\(\Leftrightarrow19x=-8\)

\(\Rightarrow x=-\frac{8}{19}\)

\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)

Th1 : 3x - 1 = 0

=> x = 1/3

Th2: 2 - 2x = 0

=> x = 1

Nhiều vậy ai làm hết được :P

1)  \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)

\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)

\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)

\(\Leftrightarrow12x-32=12x-3\)(vô lí)

Vậy pt vô nghiệm


P/s: mấy câu sau tương tự thôi mà :)))

nhăm nhe 1 câu thôi 

\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)

\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)

\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)

\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)

\(\Leftrightarrow-60+25x=36x-12\)

\(\Leftrightarrow26x-36x=-12+60\)

\(\Leftrightarrow-10x=48\)

\(\Leftrightarrow x=-4,8\)

18 tháng 3 2021

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

24 tháng 8 2019

\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)

\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)

\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)

\(=-10x^3+19x^2+74x+1\)

\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)

\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)

\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)

\(=-5x^4-11x^3+24x^2+12x+7\)

\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)

\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)

\(=-2x^2-27x+57\)

24 tháng 8 2019

\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)

\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)

\(=-x^3+4x^2+22x+5\)

\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)

\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)

\(=-9x^3-55x^2+4x+35\)

\(g,\left(x-1\right)^2-\left(x+2\right)^2\)

\(=x^2-2x+1-x^2-4x-4\)

\(=-6x-3\)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

a: \(\Leftrightarrow x^2-2x+1-x^2-2x-1=2x-6\)

=>2x-6=-4x

=>6x=6

hay x=1

b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)

=>(x-3)(-4x+1)=0

=>x=3 hoặc x=1/4

c: \(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)-x^2+4x-4=0\)

\(\Leftrightarrow3x^2+16x+5-3x^2+48=0\)

=>16x+53=0

hay x=-53/16

d: \(\Leftrightarrow x^3+4x^2-9x-36=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2-9\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

23 tháng 2 2022

b)x^2-9=(x-3)(5x+2)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(1-4x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\1-4x=0\end{matrix}\right.\left\{{}\begin{matrix}x=0+3\\x=1:4\end{matrix}\right.\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)