Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)
\(\Rightarrow3x+60=30+2k180\)
\(\Rightarrow3x=2k180-30\)
\(\Leftrightarrow x=120k-10\)
Vậy ...
b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)
Vậy ...
c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)
Vậy ...
d, Ta có : \(\cot\left(2x+\pi\right)=-1\)
\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)
\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)
Vậy ...
a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))
Vậy...
b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)
Vậy...
d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)
\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)
\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)
Vậy...
Pt \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)=\(tan\left(\pi-3x\right)\)
\(\Leftrightarrow\)\(x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow\)4\(x\)=\(\dfrac{4}{3}\pi+k\pi\)
\(\Leftrightarrow\) \(x=\) \(\dfrac{\pi}{3}+k\dfrac{\pi}{4}\)(\(k\in Z\))
\(pt\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=-cot\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=cot\left(-\dfrac{\pi}{2}+3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\pi-3x\right)\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=\pi-3x+k\pi\)
\(\Leftrightarrow4x=\dfrac{2\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{4}\)
a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)
b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)
c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)
d) \(x=300^0+k540^0,k\in\mathbb{Z}\)
a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)
\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)
\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)
hay k=-7/10(vô lý)
b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)