K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:
PT đã cho tương đương với:

\(\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+1+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4=0\)

\(\Leftrightarrow \frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)

\(\Leftrightarrow (x+2020)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

Dễ thấy \(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\neq 0\) nên \(x+2020=0\Rightarrow x=-2020\) là nghiệm của pt.

Vậy............

Mỗi số hạng của vế trái cộng thêm 1, vế phải = 5. Mỗi số hạng vế trái có mẫu số giống nhau, bạn đặt x+ 2020 làm nhân tử chung, phần còn lại tự làm nhé.

mấy bài còn lại bạn đăng cx làm tương tự

27 tháng 1 2019

\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)

\(\Leftrightarrow\left(\frac{x+24}{1996}+1\right)+\left(\frac{x+25}{1995}+1\right)+\left(\frac{x+26}{1994}+1\right)+\left(\frac{x+27}{1993}+1\right)+\left(\frac{x+2036}{4}-4\right)=0\)

\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy ....

22 tháng 2 2020

\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\\ \Leftrightarrow\left(\frac{x+24}{1996}+1\right)+\left(\frac{x+25}{1995}+1\right)+\left(\frac{x+26}{1994}+1\right)+\left(\frac{x+27}{1993}+1\right)+\left(\frac{x+2036}{4}-4\right)=0\\ \Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\\ \Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\\\Leftrightarrow x+2020=0\\\Leftrightarrow x=-2020\)

Vậy pt có tập nghiệm \(S=\left\{-2020\right\}\)

22 tháng 2 2020

\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+1+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4=0\)

\(\Leftrightarrow\left(x+2020\right)\left(...\right)=0\Rightarrow x=-2020\)

22 tháng 2 2020

\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)

\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+1+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4=0\)

\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

\(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy . . . . . . . .

16 tháng 7 2017

Ko bit

23 tháng 3 2020

\(\frac{x+24}{1996}+\frac{x+25}{1995}+\frac{x+26}{1994}+\frac{x+27}{1993}+\frac{x+2036}{4}=0\)

\(\Leftrightarrow\frac{x+24}{1996}+1+\frac{x+25}{1995}+1+\frac{x+26}{1994}+\frac{x+27}{1993}+1+\frac{x+2036}{4}-4==0\)

\(\Leftrightarrow\frac{x+2020}{1996}+\frac{x+2020}{1995}+\frac{x+2020}{1994}+\frac{x+2020}{1993}+\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{1996}+\frac{1}{1995}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

<=> x+2020=0 \(\left(\frac{1}{1996}+\frac{1}{1955}+\frac{1}{1994}+\frac{1}{1993}+\frac{1}{4}\right)=0\)

<=> x=-2020

Sửa đề: \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)Ta có: \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)

\(\Leftrightarrow\dfrac{74-x}{26}+1+\dfrac{75-x}{25}+1+\dfrac{76-x}{24}+1+\dfrac{77-x}{23}+1+\dfrac{78-x}{22}+1=0\)

\(\Leftrightarrow\dfrac{100-x}{26}+\dfrac{100-x}{25}+\dfrac{100-x}{24}+\dfrac{100-x}{23}+\dfrac{100-x}{22}=0\)

\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\right)=0\)

mà \(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}>0\)

nên 100-x=0

hay x=100

Vậy: S={100}

9 tháng 2 2021

Ta có : \(\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}=-5\)

\(\Leftrightarrow\dfrac{74-x}{26}+\dfrac{75-x}{25}+\dfrac{76-x}{24}+\dfrac{77-x}{23}+\dfrac{78-x}{22}+5=0\)

\(\Leftrightarrow\dfrac{74-x}{26}+1+\dfrac{75-x}{25}+1+\dfrac{76-x}{24}+1+\dfrac{77-x}{23}+1+\dfrac{78-x}{22}+1=0\)

\(\Leftrightarrow\dfrac{100-x}{26}+\dfrac{100-x}{25}+\dfrac{100-x}{24}+\dfrac{100-x}{23}+\dfrac{100-x}{22}=0\)

\(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\right)=0\)

Thấy : \(\dfrac{1}{26}+\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}+\dfrac{1}{22}\ne0\)

\(\Rightarrow100-x=0\)

\(\Leftrightarrow x=100\)

Vậy ...

 

 

 

 

 

 

 

 

 

 

 

 

 

\(\dfrac{x-1}{1992}+\dfrac{x-2}{1993}=\dfrac{x-3}{1994}+\dfrac{x-4}{1995}\)

\(\Rightarrow\left(\dfrac{x-1}{1992}+1\right)+\left(\dfrac{x-2}{1993}+1\right)=\left(\dfrac{x-3}{1994}+1\right)+\left(\dfrac{x-4}{1995}+1\right)\)

\(\Rightarrow\left(\dfrac{x-1+1992}{1992}\right)+\left(\dfrac{x-2+1993}{1993}\right)=\left(\dfrac{x-3+1994}{1994}\right)+\left(\dfrac{x-4+1995}{1995}\right)\)

\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}=\dfrac{x+1991}{1994}+\dfrac{x+1991}{1995}\)

\(\Rightarrow\dfrac{x+1991}{1992}+\dfrac{x+1991}{1993}-\dfrac{x+1991}{1994}-\dfrac{x+1991}{1995}=0\)

\(\Rightarrow\left(x+1991\right)\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)=0\)

\(\Rightarrow\left(x+1991\right)=0\) ( vì \(\left(\dfrac{1}{1992}+\dfrac{1}{1993}-\dfrac{1}{1994}-\dfrac{1}{1995}\right)\ne0\)

\(\Rightarrow x=-1991\)

9 tháng 8 2018

Lời giải hay😊😉

a: \(\Rightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)

=>x+36=0

=>x=-36

b: \(\Leftrightarrow\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}-1\right)+\left(\dfrac{x-6}{1998}-1\right)+\left(\dfrac{x-4}{2000}-1\right)+\left(\dfrac{x-2}{2002}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)+\left(\dfrac{x-1996}{8}-1\right)+\left(\dfrac{x-1994}{10}-1\right)\)

=>x-2004=0

=>x=2004