K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)

c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)

Bạn tự kết luận nha!!

24 tháng 4 2021

gíup mình nha 

25 tháng 4 2021

a, \(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)

\(\Leftrightarrow\frac{12x}{30}+\frac{30-20x}{30}\ge\frac{45x+30}{30}\)

\(\Leftrightarrow12x+30-20x\ge45x+30\)

\(\Leftrightarrow-8x+30\ge45x+30\Leftrightarrow-8x-45x\ge0\)

\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)

Vậy tập nghiệm của BFT là S = { x | x =< 0 } 

a) Ta có: \(2x^2+3xy+2y^2\)

\(=2\left(x^2+\dfrac{3}{2}xy+y^2\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}y+\dfrac{9}{16}y^2+\dfrac{7}{16}y^2\right)\)

\(=2\left(x+\dfrac{3}{4}y\right)^2+\dfrac{7}{8}y^2\ge0\forall x,y\)(đpcm)

14 tháng 4 2021

còn câu b bạn làm hộ mình với

 

25 tháng 3 2019

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT cô si ,ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)

Vậy ta được đpcm

ta có:

\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)

Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha 

a)Ta có: \(\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)

\(\Leftrightarrow\dfrac{3x+9+x+1}{3\left(x+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1>0\\4x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le-\dfrac{5}{2}\end{matrix}\right.\)

b) Ta có: \(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)

\(\Leftrightarrow\dfrac{3x+6+x+3}{3\left(x+3\right)}\le0\)

\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+9>0\\4x+9\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow-3< x\le-\dfrac{9}{4}\)

13 tháng 7 2021

a)\(\dfrac{x+3}{x+1}\ge-\dfrac{1}{3}\left(x\ne-1\right)\)

\(\Leftrightarrow\dfrac{x+3}{x+1}+\dfrac{1}{3}\ge0\)

\(\Leftrightarrow\dfrac{3x+9+x+1}{3x+3}\ge0\)

\(\Leftrightarrow\dfrac{4x+10}{3x+3}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+10\ge0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+10\le0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{5}{2}\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{-5}{2}\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>-1\\x\le\dfrac{-5}{2}\end{matrix}\right.\)

 b) \(\dfrac{x+2}{x+3}\le-\dfrac{1}{3}\left(x\ne-3\right)\)

\(\dfrac{x+2}{x+3}+\dfrac{1}{3}\le0\)

\(\Leftrightarrow\dfrac{3x+6+x+3}{3x+9}\le0\)

\(\Leftrightarrow\dfrac{4x+9}{3x+9}\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x+9\ge0\\3x+9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+9\le0\\3x+9>0\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{9}{4}\\x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{9}{4}\\x>-3\end{matrix}\right.\end{matrix}\right.\)    

TH1: loại

TH2: TM

Vậy no của BPT là :\(-\dfrac{9}{4}\ge x>-3\)

chúc bạn học tốt

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.