K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

Gt ⇔ \(\left|2x-3\right|\le x+1\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3\le x+1\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x\le x+1\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

 ⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x< \dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{2}\le x\le4\\\dfrac{2}{3}\le x< \dfrac{3}{2}\end{matrix}\right.\)

⇔ \(\dfrac{2}{3}\le x\le4\)

Vậy bất phương trình có tập nghiệm là

\(S=\left[\dfrac{2}{3};4\right]\)

NV
20 tháng 5 2020

ĐKXĐ: \(x\ge-\frac{3}{2}\)

Do \(1+\sqrt{3+2x}>0\) nên BPT tương đương:

\(4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right)\left(1-\sqrt{3+2x}\right)^2\left(1+\sqrt{3+2x}\right)^2\)

\(\Leftrightarrow4\left(x+1\right)^2\left(1+\sqrt{3+2x}\right)^2< \left(2x+1\right).4\left(x+1\right)^2\)

- Với \(x=-1\) ko phải là nghiệm

- Với \(x\ne-1\)

\(\Leftrightarrow\left(1+\sqrt{3+2x}\right)^2< 2x+1\)

\(\Leftrightarrow4+2x+2\sqrt{3+2x}< 2x+1\)

\(\Leftrightarrow2\sqrt{3+2x}< -3\)

BPT vô nghiệm

NV
29 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)

\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)

\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)

\(\Leftrightarrow\sqrt{9+2x}< 4\)

\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)

Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)

18 tháng 2 2021

Ta có : \(\dfrac{x-1}{x+2}\le1\)

\(\Leftrightarrow\dfrac{x-1-\left(x+2\right)}{x+2}=\dfrac{x-1-x-2}{x+2}=\dfrac{-3}{x+2}\le0\)

\(\Leftrightarrow x+2>0\)

\(\Leftrightarrow x>-2\)

- Ta có hệ BPT : \(\left\{{}\begin{matrix}x>-2\\x\le\dfrac{m-1}{2}\end{matrix}\right.\)

a, - Để HBPT có nghiệm \(\Leftrightarrow\dfrac{m-1}{2}>-2\)

\(\Leftrightarrow\dfrac{m-1+4}{2}=\dfrac{m+3}{2}>0\)

\(\Leftrightarrow m>-3\)

b, Là lạ :vvv

c, Mk nghĩ là vô nghiệm :vvvv

- Để HBPT vô nghiệm <=> \(m\le-3\)

d, Mk nghĩ là có nghiệm đúng với mọi x thuộc R .

- Không tồn tại m thỏa mãn điều kiện :vvvvv

18 tháng 2 2021

Câu a với câu c khác gì nhau