Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x-3\right)< 2\sqrt{x^2-2x-3}+3\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)< 2\sqrt{x^2-2x-3}+3\)
\(\Leftrightarrow x^2+x-3x-3< 2\sqrt{x^2-2x-3}+3\)
\(\Leftrightarrow x^2-2x-3< 2\sqrt{x^2-2x-3}+3\) (1)
Đặt \(t=\sqrt{x^2-2x-3}\) ( điều kiện \(t\ge0\) )
\(\Rightarrow bpt\left(1\right)\Leftrightarrow t^2< 2t+3\)
\(\Leftrightarrow t^2-2t-3< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}t< -1\left(loại\right)\\t>3\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2-2x-3}>3\)
\(\Leftrightarrow x^2-2x-3>9\)
\(\Leftrightarrow x^2-2x-12>0\)
\(\Leftrightarrow x\in\left(-\infty;1-\sqrt{13}\right)\cup\left(1+\sqrt{13};+\infty\right)\)
Vậy nghiệm của bất phương trình \(x\in\left(-\infty;1-\sqrt{13}\right)\cup\left(1+\sqrt{13};+\infty\right)\)
1) ĐK: \(x\ge1\)
Pt \(\Leftrightarrow\sqrt{5x-1}-3-\left(\sqrt{3x-2}-2\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\frac{5x-1-9}{\sqrt{5x-1}+3}-\frac{3x-2-4}{\sqrt{3x-2}+2}-\frac{x-1-1}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-2}+3}-\frac{3\left(x-2\right)}{\sqrt{3x-2}+2}-\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-2}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow x=2\) (nhận)
2) ĐK: \(0\le x\le1\)
Đặt \(a=\sqrt{x};b=\sqrt{1-x}\left(a,b\ge0\right)\)
ta có \(a^2+b^2=1\Leftrightarrow\left(a+b\right)^2-2ab=1\Leftrightarrow\left(a+b\right)^2=1+2ab\left(1\right)\)
Pt đã cho trở thành: \(1+\frac{2}{3}ab=a+b\left(2\right)\)
Thế (2) vào (1) ta được: \(1+2ab=\left(1+\frac{2}{3}ab\right)^2\Leftrightarrow\left[\begin{array}{nghiempt}ab=\frac{3}{2}\\ab=0\end{array}\right.\)
Thế ab = 3/2 vào (1) được a + b = 2, khi đó a, b là hai nghiệm của pt:
\(t^2-2t+\frac{3}{2}=0\) (vô nghiệm)
Thế ab = 0 vào (1) được a + b = 1, khi đó a, b là hai nghiệm của pt:
\(t^2-t=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\)
* Khi a = 1, b = 0: pt đã cho có nghiệm x = 1 (nhận)
* Khi a = 0; b = 1: pt đã cho có nghiệm x = 0 (nhận)
1.ĐK: \(x\ge\dfrac{1}{4}\)
bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)
\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)
\(\Leftrightarrow20x^2-x-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)
2.ĐK: \(-2\le x\le\dfrac{5}{2}\)
bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)
\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)
\(\Leftrightarrow x^2< -x^2+x+6\)
\(\Leftrightarrow-2x^2+x+6>0\)
\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)
3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)
.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)
\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)
\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)
*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)
*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)
2) ĐK: \(x^2+5x+2\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\le\frac{-5-\sqrt{17}}{2}\\x\ge\frac{-5+\sqrt{17}}{2}\end{array}\right.\)
bpt \(\Leftrightarrow x^2+5x+4-3\sqrt{x^2+5x+2}< 6\)
Đặt \(t=\sqrt{x^2+5x+2}\left(t\ge0\right)\) , bất pt trở thành:
\(t^2+2-3t< 6\Leftrightarrow t^2-3t-4< 0\Leftrightarrow-1< t< 4\)
Kết hợp điều kiện được: \(0\le t< 4\Rightarrow0\le\sqrt{x^2+5x+2}< 4\Leftrightarrow x^2+5x+2< 16\)
\(\Leftrightarrow x^2+5x-14< 0\Leftrightarrow-7< x< 2\)
Kết hợp điều kiện, bất pt đã cho có tập nghiệm:
(-7; \(\frac{-5-\sqrt{17}}{2}\)] \(\cup\) [ \(\frac{-5+\sqrt{17}}{2}\); 2)