K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Điều kiện xác định : \(x+2\ne0\) hay \(x\ne-2\)

Ta có : 

\(\frac{x-1}{x+2}< 0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}}\)

\(\Rightarrow\)\(-2< x< 1\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}}\) ( loại ) 

Vậy \(-2< x< 1\)

Chúc bạn học tốt ~ 

8 tháng 7 2017

( x - 1 ) ( x2 + 2x + 3 ) < 0

= x3 + 2x2 + 3x - x2 - 2x - 3 < 0

= x+ x2 - x - 3 < 0

= x3 + x2 - x < 3

Mk chỉ lm đc đến đây thôi, thông cảm nha

30 tháng 8 2021

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)

TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)

TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)

b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)

c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)

\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

13 tháng 3 2019

1) để pt trên là pt bậc nhất 1 ẩn thì:

\(\left\{{}\begin{matrix}m^2-4=0\\m-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\left(loai\right)\\m=-2\left(nhan\right)\end{matrix}\right.\\m\ne2\end{matrix}\right.\Rightarrow m=-2\)

13 tháng 7 2017

Để \(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

ta thấy x2+1 luôn dương với mọi x 

nên 2x(3x-5) <0

TH1: \(\orbr{\begin{cases}2x< 0\\3x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\3x>5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}\left(ktm\right)}}\)

TH2: \(\orbr{\begin{cases}2x>0\\3x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\3x< 5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}\left(tm\right)}}\)

vậy \(0< x< \frac{5}{3}\)

 THẤY ĐÚNG CHO MK 1 NẾU KO HIỂU THÌ ib NHA

28 tháng 3 2018

\(\frac{2x\left(3x-5\right)}{x^2+1}< 0\)

\(\Rightarrow2x\left(3x-5\right)< 0\)  ( vì \(x^2+1>0\))

\(\Rightarrow\hept{\begin{cases}2x< 0\\3x-5>0\end{cases}}\)  hoặc \(\hept{\begin{cases}2x>0\\3x-5< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 0\\x>\frac{5}{3}\end{cases}}\)  hoặc \(\hept{\begin{cases}x>0\\x< \frac{5}{3}\end{cases}}\)

\(\Rightarrow0< x< \frac{5}{3}\)

13 tháng 3 2022

bạn cứ ghi là:
     Vậy phương trình có tập nghiệm: S={0}
hoặc
     Vậy phương trình có nghiệm: x = 0

13 tháng 3 2022

bỏ cái x=0 đi 
0x=1(vô lý) 
xong kết luận là : vậy phương trình vô nghiệm 

18 tháng 8 2020

\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)

\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)

\(\Leftrightarrow6x+12< 10x+20+15\)

\(\Leftrightarrow6x-10x< 20+15-12\)

\(\Leftrightarrow-4x< 23\)

\(\Leftrightarrow x>-\frac{23}{4}\)

Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)

\(\frac{x+2}{4}-x< \frac{1}{3}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)

\(\Leftrightarrow3x+6-12x< 4\)

\(\Leftrightarrow3x-12x< 4-6\)

\(\Leftrightarrow-9x< -2\)

\(\Leftrightarrow x>\frac{2}{9}\)

Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)

\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))

Xét hai trường hợp

1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)

2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )

Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)

3 tháng 7 2017

\(\frac{x+1}{x-2}\ge2\)

\(\Rightarrow x+1\ge2\left(x-2\right)\)

\(\Leftrightarrow x+1\ge2x-4\)

\(\Leftrightarrow-x\ge-5\)

\(\Leftrightarrow x\le5\)

vậy tập nghiệm của bất phương trình là: {x| x\(\le\)5}

3 tháng 7 2017

ĐKXĐ: x khác 2 

\(\Leftrightarrow x+1\ge2\text{x}-2\)

\(\Leftrightarrow x-3\le0\)

\(\Leftrightarrow x\le3\)

24 tháng 4 2022

1.a)|−7x|=3x+16

Vì |-7x| ≥ 0  nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\)    (*)

Với đk (*), ta có: |-7x|=3x+16

\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔  \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)

⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)

b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)

⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)

⇒ x- 2x - x + 2 - x- 2x = 5x - 8  

⇔ -5x - 5x = -8 - 2

⇔ -10x = -10

⇔ x=1

2.7x+5 < 3x−11

⇔ 7x - 3x < -11 - 5

⇔ 4x < -16

⇔ x < -4

bạn tự biểu diễn trên trục số nha !