K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Bình phương ra bậc 2=>chọn PA Bình phương

Đk:(*) \(\left\{\begin{matrix}x\ne1\\x\ne-2\end{matrix}\right.\)

\(\left(\frac{5}{x+2}\right)^2< \left(\frac{10}{x-1}\right)^2\)

chia 5 hai vế Bình phương chuyển vế ta được\(\Leftrightarrow\frac{\left(x-1\right)^2-4\left(x+2\right)^2}{\left(x+2\right)^2\left(x-1\right)^2}< 0\Leftrightarrow\frac{\left(x^2-2x+1\right)-4\left(x^2+4x+4\right)}{\left(x+2\right)^2\left(x-1\right)^2}< 0\) (1)

do mẫu số \(\left[\left(x+2\right)\left(x-1\right)\right]^2>0\) với mọi x thỏa mãn (*)

\(\Leftrightarrow\left(x^2-2x+1\right)-4x^2-16x-16=-3x^2-18x-15< 0\)

chia hai vế cho (-3) ta được

\(x^2+6x+5>0\Leftrightarrow\left(x+1\right)\left(x+5\right)>0\Leftrightarrow\left[\begin{matrix}x>-1\\x< -5\end{matrix}\right.\)

Kết luận:No của BPT (1)là: \(\left[\begin{matrix}x< -5\\\left\{\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\end{matrix}\right.\)

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

8 tháng 3 2022

b: =>|x+2|+|2x-1|<x+1(1)

Trường hợp 1: x<-2

(1) sẽ là -x-2-2x+1<x+1

=>-3x-1<x+1

=>-4x<2

hay x>-1/2(loại)

Trường hợp 2: -2<=x<1/2

(1) sẽ là x+2+1-2x<x+1

=>-x+3<x+1

=>-2x<-2

hay x>1(loại)

Trường hợp 3: x>=1/2

(1) sẽ là x+2+2x-1<x+1

=>3x+1<x+1

=>x<0(loại)

Vậy: BPT vô nghiệm

giống Nguyễn Lê Phước Thịnh nhé

NV
16 tháng 4 2021

\(\Leftrightarrow x\left(x-2\right)\left(x^2+x-6\right)\le0\)

\(\Leftrightarrow x\left(x-2\right)^2\left(x+3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\-3\le x\le0\end{matrix}\right.\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3