Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian xe máy đi từ A đến B là: \(\dfrac{x}{15}\)(h)
Thời gian xe máy đi từ B về A là: \(\dfrac{x}{12}\)(h)
Vì thời gian về nhiều hơn thời gian đi 22' nên ta có phương trình:
\(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{11}{30}\)
\(\Leftrightarrow\dfrac{5x}{60}-\dfrac{4x}{60}=\dfrac{22}{60}\)
\(\Leftrightarrow5x-4x=22\)
hay x=22(thỏa ĐK)
Vậy: Độ dài quãng đường AB là 22km
Đổi 22 phút = 11/30h
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là x+34(h)
Quãng đường đi 15x 3/4 (km)
Quãng đường về 12(x+3/4)(km)
Vì quãng đường AB lúc đi và về không đổi và tg về nhiều hơn TG đi 11/30h nên ta có phương trình
15x=12(x+34)
---> x=3(tmđk)
--->quãng đường AB dài :15.3=45(km)
Gọi độ dài quãng đường AB là a(km) \(\left(a>0\right)\)
Thời gian lúc đi là \(\dfrac{a}{16}\)(h)
Thời gian lúc về là \(\dfrac{a}{12}\) (h)
Đổi 10 phút = \(\dfrac{1}{6}\) giờ
Theo đề: \(\dfrac{a}{16}+\dfrac{1}{6}=\dfrac{a}{12}\Rightarrow\dfrac{3a+8}{48}=\dfrac{a}{12}=\dfrac{4a}{48}\Rightarrow3a+8=4a\)
\(\Rightarrow a=8\)
45 phút = \(\dfrac{3}{4}h.\)
Gọi quãng đường AB là x (km) \(\left(x>0\right).\)
Thời gian đi từ A đến B là \(\dfrac{x}{48}\left(h\right).\)
Thời gian đi về là \(\dfrac{x}{48+12}=\dfrac{x}{60}\left(h\right).\)
Vì thời gian về ít hơn thời gian đi là 45 phút, nên ta có PT:
\(\dfrac{x}{60}+\dfrac{3}{4}=\dfrac{x}{48}.\\ \Rightarrow x=180\left(TM\right).\)
Bài 2: \(15phút=\dfrac{1}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là x (km, x>0)
Thời gian xe máy đi từ A đến B là : \(\dfrac{x}{45}\left(h\right)\)
Thời gian xe máy đi về là : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về nhiều hơn thời gian đi là 15 phút, ta có phương trình :
\(\dfrac{x}{40}-\dfrac{x}{45}=\dfrac{1}{4}\)
\(<=> 9x -8x = 90\)
\(< =>x=90\left(tm\right)\)
=> Thời gian đi là : \(\dfrac{90}{45}=2\left(h\right)\)
=> Thời gian về là : \(2+0,25=2,25\left(h\right)\)
\(Vậy...\)
Bài 3 :
\(2h15ph=2,25\left(h\right)\)
\(2h30ph = 2,5 (h)\)
Gọi vận tốc thực của ca nô là : x ( km/h , x>2)
=> Độ dài quãng đường AB khi ca nô xuôi dòng là : \((x+2).2,25 (km)\)
=> Độ dài quãng đường AB khi ca nô ngược dòng là : \((x-2).2,5 (km)\)
Vì độ dài quãng đường AB khi ca nô đi xuôi và ngược dòng là như nhau, ta có phương trình :
\((x+2).2,25= (x-2).2,5\)
\(<=> 2,25x + 4,5 = 2,5x - 5 <=> 0,25x = 9,5 <=> x = 38 (km/h) ( nhận)\)
Khoảng cách từ A đến B là : \((38+2),2,25= 90 (Km) \)
\(Vậy...\)
Gọi độ dài AB là x
Thời gian đi là x/15
Thời gian về là x/12
Theo đề, ta có: x/12-x/15=3/4
=>x=3/4*60=45
Gọi độ dài quãng đường AB là x
Thời gian đi là x/12
Thời gian về là x/18
Theo đề, ta có: x/12-x/18=3/4
hay x=27
Gọi độ dài quãng đường AB là x (km, x>0) thì thời gian đi của người đó là \(\frac{x}{9}\left(h\right)\)
Độ dài quãng đường lúc về là x+6(km)
Vận tốc lúc về là 9+3=12 (km/h)
Thời gian trở về A là \(\frac{x+6}{12}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi là 20'\(\left(=\frac{1}{3}h\right)\)nên ta có pt:
\(\frac{x}{9}-\frac{x+6}{12}=\frac{1}{3}\)
\(\Rightarrow4x-3x-18=12\)
\(\Leftrightarrow x=30\left(TMĐK\right)\)
Vậy quãng đường AB dài 30 km
Gọi x (km) là độ dài quãng đường từ nhà người đó ra chợ (x>0).
Thời gian người đó chở hàng từ nhà ra chợ là x/12 (giờ).
Thời gian người đó đi về là x/15 (giờ).
Ta có: x/12-x/15=20/60 \(\Rightarrow\) x=20 (km, nhận).
Vậy quãng đường cần tìm dài 20 km.