Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).
Chiều rộng là: \(\frac{300}{x}\left(m\right)\)
Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)
Chiều dài mới là: \(x+5\left(m\right)\)
Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)
\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)
Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu là \(15m\).
Gọi chiều dài và chiều rộng mảnh vườn lần lượt là \(a\left(m\right),b\left(m\right)\left(a>b>0\right)\)
Ta có: \(\left(a+b\right).2=248\Rightarrow a+b=124\)
Diện tích ban đầu là: \(ab\left(m^2\right)\)
Diện tích mới là: \(\left(a+5\right)\left(b+3\right)=ab+255\left(m^2\right)\)
\(\Rightarrow3a+5b=240\)
Ta có hệ phương trình: \(\left\{{}\begin{matrix}a+b=124\\3a+5b=240\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a+5b=620\\3a+5b=240\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=380\\b=124-a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=190\left(m\right)\\b=-66\left(m\right)\end{matrix}\right.\left(L\right)\)
Vậy không có khu vườn có các kích thước thỏa mãn ycbt.
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m)
ĐK : x>5; y > 0 , x >y
Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)
Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)
Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có :
x - 5 = y + 2
<=> x - y = 7 (1)
Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)
Từ (1) và (2) ta có hệ :
x - y = 7 và xy = 120 (thế)
Giải hệ ta được x = 15(TMDK ẩn)
y = 8(TMDK ẩn)
Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m
Tham khảo
Gọi chiều dài của hình chữ nhật là a(m)
Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120
Theo đề bài:
Diện tích của hcn là 120m^2 => ab=120m^2 (1)
Tăng chiều rộng giảm chiều dài chứ nhỉ?
Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5
\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)
⇒a\(^2\)-7a-120=0
⇒(a−15)(a+8)=0⇒a=15⇒b=8
Gọi chiều dài của hình chữ nhật là : x (m , x>4 )
Chiều rộng của hình chữ nhật là : 240 / x (m)
Chiều dài khi đó là : x - 4 (m)
Chiều rộng khi đó là : 240/x +3 (m)
Khi đó diện tích của hình chữ nhật không đổi nên ta có phương trình : (x - 4)(240/x +3) = 240
=> x = 20 (thỏa mãn ) hoặc x = -16 (loại )
Vậy chiều dài hình chữ nhật là 20 m
chiều rộng hình chữ nhật là 12 m
Gọi kích thước chiều dài và chiều rộng ban đầu lần lượt là x;y (m) (x>y>3)
Diện tích mảnh đất ban đầu là: 80m2, ta có pt: xy=80 (1)
Chiều dài mảnh đất sau khi tăng 10m là: x+10 (m)
Chiều rộng mảnh đất sau khi giảm 3m là: y-3 (m)
Diện tích mới của mảnh đất là: (x+10)(y-3) (m2)
Do diện tích mới tăng thêm 20m2 nên diện tích mới khi đó là: 80+20=100 (m2)
Ta có pt:\(\left(x+10\right)\left(y-3\right)=100\) (2)
Từ (1) (2) ta có hệ: \(\left\{{}\begin{matrix}xy=80\\\left(x+10\right)\left(y-3\right)=100\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xy=80\\xy-3x+10y-30=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=80\\-3x+10y=50\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xy=80\\y=\dfrac{50+3x}{10}\end{matrix}\right.\)
\(\Rightarrow x\left(\dfrac{50+3x}{10}\right)=80\)
\(\Leftrightarrow3x^2+50x-800=0\Leftrightarrow\left(x-10\right)\left(2x+80\right)=0\)
\(\Leftrightarrow x=10\) (do 2x+80>0 với mọi x>3)
\(\Rightarrow y=8\) (tm)
Vậy kích thước chiều dài và chiều rộng ban đầu là 10m và 8m
Gọi chiều dài và chiều rộng của hcn lần lượt là: a, b (m)
Ta có: \(\hept{\begin{cases}ab=300\\\left(a+5\right)\left(b-3\right)=300\left(1\right)\end{cases}}\)
Từ (1) \(\Rightarrow ab-3a+5b-15=300\)
\(\Leftrightarrow300-3a+5b-15=300\)\(\Leftrightarrow-3a+5b=15\)\(\Leftrightarrow3a-5b=-15\)
Đặt \(c=3a\)và \(d=-5b\)\(\Rightarrow a=\frac{c}{3}\); \(b=\frac{d}{-5}\)
Ta có hệ \(\hept{\begin{cases}\frac{c}{3}.\frac{d}{-5}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{cd}{-15}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}cd=-4500\\c+d=-15\end{cases}}\)
Áp dụng hệ thức Viets ta có: \(X^2-\left(-15\right)X-4500=X^2+15X-4500\)
\(\Delta=15^2-4.1.\left(-4500\right)=18225\)
\(X_1=c=\frac{-15+\sqrt{18225}}{2}=60\) hoặc \(X_2=d=\frac{-15-\sqrt{18225}}{2}=-75\)
\(\Rightarrow a=\frac{c}{3}=\frac{60}{3}=20\); \(b=\frac{-75}{-5}=15\)
\(\Rightarrow P_{hcn}=2\left(a+b\right)=2\left(20+15\right)=70\)
Vậy chu vi hcn ban đầu là 70 cm